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Abstract

We extend the model presented in Bonollo et al. [3] by introducing a multi-
scenario framework that allows for a richer and more realistic specification, including
non-static (stochastic) probabilities of default and losses given default. Though more
complex from a computational point of view, the model with scenarios is still tractable
analytically, yielding results in closed form expressions. The approximated value at
risk has been calculated by generalizing the procedure exposed in [3] for the single
scenario case, in the presence of granularity in the exposures, sector concentration and
contagion. The outcome is not simply a weighted sum of the VaRs in the individual
scenarios, but results in a more involved function of the single scenarios’ parameters.

The theoretical model description is complemented with an in-depth numerical
analysis.

1 Introduction

In recent years many models have been designed in theory and utilized in practice to
calculate the value at risk (VaR) of credit portfolios. Though starting from different
assumptions on the probability distributions of the factors affecting the default’s
occurrence of the obligors and on the recovery fraction of the exposures at default,
all these models try to measure also the concentration and contagion risks. Example
of such models are CreditMetrics [16], CreditRisk+ [27], PortfolioManager [2] and
CreditPortfolioView [29] and some of them rely on computationally heavy Monte
Carlo simulations to work out the calculations.
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A different solution to the problem of calculating economic capital for credit
exposures exploits an approximated analytical technique which applies to one-factor
Merton type models. This method, originally introduced by Vasicek [26], consists
in replacing the original portfolio loss distribution with an asymptotic one, whose
VaR can be computed analytically. This approach is also known as the Asymptotic
Single-Risk Factor (ASRF) paradigm which underlies the Internal Ratings-Based
(IRB) framework of the Pillar I of Basel II [20] regulation, and it is an example of
a very simplified model for credit VaR. Basic hypothesis of this model include the
homogeneity of the underlying portfolio and a common factor driving systematic risk.
As such, the model does not consider concentration, sector and contagion effects, but
it allows for an easy and fast computation of the credit portfolio VaR.

The regulator is aware of the severe flaws of the model and considers its results a
(regulatory) minimal, albeit (economically) insufficient capital at risk, and it forces
financial institutions to equip themselves with more sophisticated tools to account
for the aforementioned neglected risks. Ideally, these sophisticated tools should be
an extension to the simplified model, so as to make the comparison with the latter
straightforward, and they should retain the analytical feature so as to lighten as much
as possible the computation burden.

According to this criterion, the difference between true and asymptotic VaR has
been computed analytically through a second order approximation [14]. Many steps
have been taken in this direction, extending the original Vasicek result for homoge-
neous portfolios to include granularity risk [28], [18], [13], [8] and sectoral concentra-
tion risk (see Pykhtin [21]). In these works, concentration risk represents a violation
of the ASFR model and can be decomposed into two contributions: an idiosyncratic
part, single name or imperfect granularity risk, due to the small size of the portfolio
or to the presence of large exposures associated to single obligors and a systematic
term, sectoral concentration, due to imperfect diversification across sectorial factors.

The third source of risk, credit contagion, lies somewhat in-between the previous
two [20]. This risk takes into account the occurrence of default events triggered by
inter-dependencies (legal, financial, business-oriented) among obligors. Very diverse
approaches have been proposed to tackle this problem. Davis and Lo [5] have built
a first model where the default of any company in the portfolio can infect all the
others. Egloff et al [7] have developed a neural-network inspired model to mimic
the structure of links among obligors in a portfolio. Recently, Rösch et al [22] have
proposed an extension of [5] in a default mode scenario where obligors are divided
into two categories: those who can be considered immune from contagion “I-firms”
(infecting) and those who can be contaminated “C-firms” .

In this paper, we study in a unified framework the effects of concentration and
contagion risk. A first attempt to generalize the work by Pykhtin in this direction has
been pursued by Yun [30]. However, the resulting model specification appears incom-
plete to some extent and hardly applicable to concrete problems. A more complete
and detailed setting has been presented in Bonollo et al [3], who combine Pykhtin’s
idea with the contagion specification proposed by Rösch [22], obtaining a model that
is general enough and yet preserves analytical tractability. Here, we push forward the
analysis and try and overcome one of the flaws in this model, namely the static prob-
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abilities of default (PD) and recovery rates independent of the PDs. Actually, these
deficiencies are common also to other analytical models, such as CreditRisk+ [27]
developed by Credit Suisse, and only more computationally intensive frameworks,
such as CreditMetrics [16], enjoy richer specifications as for defaults and recovery
rates, typically via a rating migration’s modeling. Recently some works have intro-
duced a dependence between the PDs and the recovery rates within the ASRF model
(see for example Sanchez et al [23] and Sen [24]), although they do not consider a
multi-factor economy and contagion amongst obligors. The model we present in what
follows allows for stochastic probabilities of default and recovery rates, while retaining
the benefits of the analytical computation, thus combining the desirable features of
several renowned models. Besides, we show that it can be considered under different
perspectives, even a rating migration one, so that it allows for a flexible specification
to best suit the financial institution’s needs.

The paper is organized as follows. In Section 2 we present and motivate the main
idea, based on the introduction of scenarios. Section 3 is devoted to the description
of the model, including a thorough specification of the contagion part. The main
theoretical results, expressing the value at risk of a credit portfolio in analytical terms,
are exposed in Section 4. Section 5 concludes with a detailed numerical analysis.
Section 6 summarizes and collects our final remarks. Technical details and issues can
be found in the Appendix.

2 General framework: scenarios

Before giving a detailed description of the model we highlight some of its underlying
assumptions. The starting point is a multi-factor default mode Merton model. Default
happens when a continuous variableXi describing the financial well-being of borrower
i at the horizon falls below a certain threshold. As mentioned in the Introduction,
an extension of the multi-factor model including the effects of contagion risk has
already been proposed in [3]. Here we focus on the generalization which allows the
rating features of each obligor to loose their static character. More precisely, we
relax the assumption of constant probability of default and loss given default, for
each borrower during the chosen time horizon, and allow them to assume values,
randomly drawn from a finite distribution. This is achieved through the introduction
of different possible scenarios.

In the model’s specification that we present in Section 3, each obligor can in
theory be assigned different probabilities of default and losses given default, thus
identifying a corresponding number of scenarios; the total number of scenarios will
be the sum of all the obligors’ specific scenarios, which could result to be rather large.
In practice, though, obligors are gathered, on the basis of their creditworthiness, in a
certain number of rating classes each featured by its own PD and LGD: in this case
it is possible to dramatically reduce the number of possible scenarios under some
assumptions. Actually, in the numerical analysis we show in Section 5 we use this
re-casting of the obligors into a predefined set of rating classes, which is a standard
approach in the banking industry. This, besides making the number of scenarios
practically manageable, allows also to interpret a scenario under two economically
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and financially meaningful perspectives:

1. As a given state of the economy, with its specific probabilities of default and
losses given default (or, equivalently, recovery rates) associated to each rating
class. In each scenario, the obligors always belong to the same rating class, but
rating classes’ PDs and LGDs change with respect to other scenarios, due to
cyclical conditions of the economy. As an example, a recession can give rise to
a scenario with generally higher PDs and LGDs than a growth period.

2. As a given state of economy, with its rating classes containing a given set of
obligors. In this case, for each rating class, PDs and LGDs are constant through
all the possible scenarios, but in each scenario the composition (in terms of
obligors) of each single rating class is different. In practice, it is as if we were
modeling the rating migration of the obligors.

Either perspectives above can be expressed by means of the following general
setting of the loan’s portfolio:

• The loans are associated to M distinct borrowers. Each borrower has exactly
one loan characterized by exposure EADi. We define the weight of a loan in
the portfolio as wi = EADi/

∑M
i=1 EADi

• The uncertainty on the rating features of the ith borrower is modeled through
the introduction of S scenarios, each characterized by possible values which
can be assumed by the default probability PDi and the loss-given default
LGDi = Qi (where Q stands for a stochastic variable, with mean µ and stan-
dard deviation σ):

(PD,Q)i =






(p1, Q1)i with probability λi1
(p2, Q2)i with probability λi2
...

...
(pS , QS)i with probability λiS

(1)

where
∑S

ϕ=1 λiϕ = 1 for each i. Scenarios are independent of each others and
each Q is assumed to be independent of the the other Qs and the remaining
stochastic variables of the model.

This setting includes the possibility to introduce rating classes, so that all the
obligors belonging to one of those, have the same PD and LGD. If we build scenarios
according to the first perspective, in each of them the number of PDs and LGDs is
reduced from M to the number of rating classes (usually below 20). When we build
scenarios according to the second perspective, we cannot really abate substantially
the number of scenarios unless we make strong assumptions on the possible migrations
of the single obligors. An example of such assumptions is shown in Section 5.

Finally, it is worth mentioning the fact that the framework allows for an (implicit)
correlation between the level of the default probabilities and the losses given default,
simply by devising scenarios where higher LGDs are associated to higher PDs. This
is an interesting feature that takes into account an effect widely observed in practice
and extensively documented in the literature (see Sironi et al [25]). To our knowledge,
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such effect is usually neglected in the most popular models, although some models
presented in theoretical works account for that (an incomplete list includes Merton
[19], Black and Cox [1] and, more recently, Frye [9] and [10], Jarrow [17], Carey and
Gordy [4]).

3 Model specification

We now turn to the description of the theoretical model. Since we start to develop it
from a multi-factor environment, we choose to follow the notation already adopted
in [3] and originally introduced by Pykhtin [21]. First we present the multi-factor
specification, secondly we add the contagion part.

3.1 Multi-factor setup

Asset returns {Xi}i=1,...,M are the key variables to be modeled: default occurs for
borrower i, in a given scenario ϕ, when the corresponding Xiϕ falls below the thresh-
old N−1(piϕ). Asset returns are assumed to be distributed according to a standard
normal distribution:

Xiϕ = riϕYi +
√

1 − r2iϕ ξi , (2)

where the systematic contribution is expressed in terms of a composite variable
{Yi}i=1...M , encoding the effects of multiple sectors (see Appendix A1) and the id-
iosyncratic component of risk, which can be diversified away in the case of an infinitely
granular portfolio, is given by ξi ∼ N (0, 1) independent of Yi. In the most general
case, we let the sensitivity of borrower i to systematic risk, namely riϕ ≥ 0, depend
on the given scenario.

The composite factor can be expressed as a linear combination of N independent
systematic factors Zk ∼ N (0, 1), k = 1, . . . , N ,

Yi =
N∑

k=1

αik Zk , (3)

the assumption of unit variance yielding
∑N

k=1 α
2
ik = 1. In turn, the quantity riϕYi

can be rewritten in terms of

• a unique systematic risk factor Y =
∑N

k=1 bkZk, with bk ≥ 0,

• a residual contribution
∑N

k=1(riϕαik − aiϕbk)Zk, independent of Y , which en-
codes the conditional asset correlation1

ρYiϕ,jψ =
riϕrjψ

∑N
k=1 αikαjk − aiϕajψ√

(1 − a2
iϕ)(1 − a2

jψ)
. (4)

1The unconditional correlation between borrowers i and j, respectively in scenarios ϕ and ψ, is given
by corr(Xiϕ,Xjψ) ≡ ρiϕ,jψ = riϕrjψ

∑N

k=1
αik αjk.
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The non-negative coefficients aiϕ ≡ riϕ
∑N

k=1 αikbk, are effective factor loadings,
obtainable through an optimization procedure, sketched in Appendix B. The unit
variance constraint enforces

∑N
k=1 b

2
k = 1.

Therefore, asset returns for obligor i, in a given scenario ϕ, can be cast into the
general form

Xiϕ = aiϕY +
N∑

k=1

(riϕαik − aiϕbk)Zk +
√

1 − r2iϕ ξi . (5)

3.2 Credit contagion

Contagion risk can be ascribed to inter-company ties, such as legal (parent-subsidiary)
relationships, financial and business oriented relations (supplier-purchaser interac-
tions) and so on. This entails a complex network of links among obligors, which
makes the credit contagion problem very hard to solve.

Here we adopt a simplified perspective, already exposed in Bonollo et al [3]. We
assume that obligors are broadly divided into two categories: those firms which are
immune from contagion (referred to as “I-firms”, i.e. infecting) and those companies
which can be contaminated by the first group through credit contagion (“C-firms”).
Asset returns associated to group “I” follow the multi-factor specification given by
eq. (2) while “C-firms”’ asset returns (for obligor i in a scenario ϕ) are assumed to
satisfy

Xiϕ = riϕYi +
√

1 − r2iϕ ξ(Γi, ǫi) . (6)

The firm-specific factor ξ(Γi, ǫi), which is assumed to be scenario-independent, is
defined by

ξ(Γi, ǫi) = giΓi +
√

1 − g2
i ǫi (7)

where

• ǫi is the usual idiosyncratic contribution,

• the term giΓi encodes the effects of contagion risk. The composite contagion
factor Γi can be written as a sum over latent contagion variables Ck (assumed
to be independent and distributed as N (0, 1))

Γi =
N∑

k=1

γik Ck .

The unit variance property of Xiϕ is preserved if
∑N

k=1 γ
2
ik = 1. We decompose each

sector into a “I” segment and a “C” one. Therefore, the contagion effect experienced
by an arbitrary “C-firm” can be thought of as the weighted sum of contributions
coming from the infecting segments of different sectors. Under this specification, the
number of latent contagion factors equals the number of industry-geographic factors,
N . The coefficient gi plays the role of a contagion factor loading and represents a
measure of how much obligor i is overall affected by contagion. It is worth noticing
that eq.s (6-7) express in compact form also the behavior of “I-firms” , with the
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understanding that gi = 0 in that case. We will come back to the estimation of the
contagion parameters in the Appendix A2.

3.3 Summary

Having specified the model in this way, by making the effects due to multi-factors
and contagion explicit, asset returns, for obligor i in a given scenario ϕ, then follow

Xiϕ = aiϕY +

N∑

k=1

(riϕαik − aiϕbk)Zk +

+
√

1 − r2iϕ gi

N∑

k=1

γikCk + (8)

+
√

1 − r2iϕ

√
1 − g2

i ǫi .

The conditional correlation between distinct obligors i and j, respectively in scenarios
ϕ and ψ, assumes the form

ρY Ciϕ,jψ =
riϕrjψ

∑N
k=1 αikαjk +

√
1 − r2iϕ

√
1 − r2jψ gigj

∑N
k=1 γikγjk − aiϕajψ

√
(1 − a2

iϕ)(1 − a2
jψ)

. (9)

4 VaR decomposition and results

Given this setup, the portfolio loss rate L can be written as the weighted sum over
individual loss rates

L =
M∑

i=1

wiLi .

Each Li is a stochastic variable whose value is allowed to vary across different sce-
narios

Li =






Qi1 1{Xi1≤N−1(pi1)} with probability λi1
Qi2 1{Xi2≤N−1(pi2)} with probability λi2
...

...
QiS 1{XiS≤N−1(piS)} with probability λiS

(10)

Qiϕ and the indicator function 1{.} represent respectively the stochastic LGD and the
event of default, associated to obligor i, in a given scenario. Our goal is to calculate
the quantile at confidence level q of this quantity, namely tq(L). Here, we sketch
briefly the main steps of the calculation, following the notation adopted by Pykhtin
[21], thanks to the original contributions developed by [18] and [14].

The main idea consists in calculating tq(L) analytically, through a Taylor ex-
pansion around the quantile of another variable L, such that tq(L) is analytically
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tractable and sufficiently close to tq(L). Therefore, the portfolio loss L can be ex-
pressed in terms of a new variable L

L ≡ L+ U ,

where U = L−L plays the role of a perturbation. Rendering explicit the dependence
of L on the scale of the perturbation, we can write

Lε ≡ L+ εU

with the understanding that the original definition of L is recovered for ε = 1. The
key result obtained in [18] allows to compute, for high enough confidence level q, the
quantile tq(Lε) as a series expansion in powers of ε around tq(L). Up to the second
order, tq(L) ≡ tq(Lε=1) reads

tq(L) ≈ tq(L) +
dtq(Lε)

dε

∣∣∣∣∣
ε=0

+
1

2

d2tq(Lε)

dε2

∣∣∣∣∣
ε=0

. (11)

Each term of this expansion will be given a separate analysis. While we leave the
thorough discussion of the zeroth order term tq(L) to the next section, here we will
spend a few words about higher order contributions.

The first and second derivatives of VaR have been originally calculated by Gourier-
oux et al. [14]. Their expressions are given by

dtq(Lε)

dε

∣∣∣∣∣
ε=0

= E[U |L = tq(L)] , (12)

d2tq(Lε)

dε2

∣∣∣∣∣
ε=0

= −
1

fL(l)

d

dl

(
fL(l) var[U |L = l]

)
∣∣∣∣∣
l=tq(L)

, (13)

where fL(.) is the probability density function of L and var[U |L = l] is the variance
of U conditional on L = l.

The key point now consists in choosing the appropriate L. We follow the path
traced by Pykhtin [21] in the multi-sector case, extending it in order to include differ-
ent scenarios, besides contagion already introduced in [3]. We anticipate that, with
a proper choice of L (also the most intuitively appealing), the first order correction
can be caused to vanish, for any confidence level q.

4.1 Zeroth order term

We define the variable L as the limiting loss distribution in the one-factor Merton
framework [19] i.e.

L ≡ l(Y ) = E[L|Y ] . (14)
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Performing the calculations explicitly, we get

L ≡ E

[
M∑

i=1

wiQi 1{Xi≤N−1(pi)}

∣∣∣∣∣Y
]

=

=

M∑

i=1

wi

S∑

ϕ=1

λiϕµiϕ P(Xiϕ ≤ N−1(piϕ)|Y ) =

=
M∑

i=1

wi

S∑

ϕ=1

λiϕµiϕN



N
−1(piϕ) − aiϕY√

1 − a2
iϕ



 =

=
M∑

i=1

wi

S∑

ϕ=1

λiϕµiϕ p̂iϕ(Y ) , (15)

where p̂iϕ(y) is the probability of default of borrower i, given scenario ϕ, conditional
on Y = y:

p̂iϕ(y) = N



N
−1(piϕ) − aiϕy√

1 − a2
iϕ



 .

(N indicates the cumulative normal distribution). The quantile of L at level q can
be calculated analytically as

tq(L) = l(N−1(1 − q)) . (16)

The complete proof is presented in Appendix C1.

4.2 First order term

The first order derivative (12) of VaR is expressed as the expectation of U = L− L,
conditional on tq(L) = l. Given the discussion in Appendix C1 about the mono-
tonicity and inversion properties of L = l(Y ), such a conditioning is equivalent to
Y = y = N−1(1− q). Therefore, given the definition of L in (14), the first derivative
becomes

dtq(Lε)

dε

∣∣∣∣∣
ε=0

= E[U |Y = N−1(1 − q)]

and vanishes automatically.

4.3 Second order term

We are finally left with the second order contribution, containing the term (13).
Recalling the observation about conditioning developed in the previous paragraph,
the second order derivative yields

d2tq(Lε)

dε2

∣∣∣∣∣
ε=0

= −
1

n(y)

d

dy

(
n(y)

ν(y)

l′(y)

) ∣∣∣∣∣
y=N−1(1−q)

,
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where ν(y) ≡ var(U |Y = y) is the conditional variance of U , l′(.) is the first derivative
of l(.) and n(.) is the standard normal density. By carrying out the derivative with
respect to y explicitly and using the fact that n′(y) = −y n(y), it turns out [21]

d2tq(Lε)

dε2

∣∣∣∣∣
ε=0

= −
1

l′(y)

[
ν ′(y) − ν(y)

(
l′′(y)

l′(y)
+ y

)] ∣∣∣∣∣
y=N−1(1−q)

4.4 The complete formula

Pulling all the pieces together and considering that first-order contributions cancel
out, the total approximated VaR up to second order is given by

tq(L) ≈ tq(L) + ∆tq (17)

where

∆tq = −
1

2 l′(y)

[
ν ′(y) − ν(y)

(
l′′(y)

l′(y)
+ y

)] ∣∣∣∣∣
y=N−1(1−q)

. (18)

The function l(y) is defined as in (14), (15), and ν(y) = var[L|Y = y] is the conditional
variance of L on Y = y.

ν(y) (and hence the total correction) can be further decomposed in terms of its
systematic and idiosyncratic components

ν(y) = ν∞(y) + νGA(y) , (19)

where

ν∞(y) = var[E(L|{Zk})|Y = y] ,

νGA(y) = E[var(L|{Zk})|Y = y] . (20)

Formulae (17) through (20) encodes the effects of concentration risk2:

• sector concentration affects both the zeroth order term tq(L), in an implicit way
and by construction, and the second order correction depending on ν∞(y). The
latter, obtained in the limit of an infinitely fine-grained portfolio, represents the
systematic component of risk which cannot be diversified away;

• single name concentration is described by the granularity adjustment term
which comes from eq. (18), whenever ν(y) = νGA(y). For a large enough number
of obligors M (ideally, in the limit M → ∞) and under the condition of a suf-
ficiently homogeneous distribution of loans’ exposures (in mathematical terms∑M

i=1 w
2
i → 0, while

∑M
i=1 wi = 1) the granularity contribution vanishes;

• contagion risk shows its effects on the second order correction only. However,
unlike granularity and sector concentration, it is not an additive-type contribu-
tion but affects implicitly the conditional variance ν(y) as a whole, through the
conditional correlation matrix given by formula (9), which encodes synthetically
all the information about contagion (see final formulas).

2Explicit expressions for the derivatives of l(y) and ν(y) can be found in Appendix C2.
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Since we have already provided an analytical formula for the zeroth order term, eq.
(16), the final step consists in giving explicit expressions for the corrections (20). It
turns out they are more easily calculated starting from the very definition of the
conditional variance:

ν(y) ≡ var[L|Y = y] = var

[
M∑

i=1

wi Li

∣∣∣∣∣Y = y

]
=

=
M∑

i=1

w2
i var[Li|Y = y] +

M∑

i6=j=1

wiwj cov[Li, Lj |Y = y] . (21)

We proceed to compute the two contributions on the right hand side separately.

• The variance term can be expressed as

var[Li|Y ] = E[L2
i |Y ] − E[Li|Y ]2 .

Given the previous definition of Li, eq. (10), and

L2
i =






Q2
i1 1{Xi1≤N−1(pi1)} with probability λi1

Q2
i2 1{Xi2≤N−1(pi2)} with probability λi2

...
...

Q2
iS 1{XiS≤N−1(piS)} with probability λiS

(22)

where we have used the property 1
2
{.} = 1{.} of the indicator function, we get

E[L2
i |Y = y] =

S∑

ϕ=1

λiϕ(µ2
iϕ + σ2

iϕ) p̂iϕ(y) ,

E[Li|Y = y]2 =
S∑

ϕ=1

S∑

ψ=1

λiϕλiψµiϕµiψ p̂iϕ(y)p̂iψ(y) ,

which lead to

var[Li|Y = y] =
S∑

ϕ=1

λiϕ p̂iϕ(y)



(µ2
iϕ + σ2

iϕ) − µiϕ

S∑

ψ=1

λiψµiψ p̂iψ(y)



 . (23)

• Similarly, the covariance term can be decomposed into

cov[Li, Lj |Y ] = E[LiLj |Y ] − E[Li|Y ]E[Lj |Y ] .

The first component yields

E[LiLj |Y = y] =
S∑

ϕ=1

µiϕ

S∑

ψ=1

µjψ λiϕ,jψ N2(N
−1(p̂iϕ(y)), N−1(p̂jψ(y)), ρY Ciϕ,jψ) ,

where N2(., ., .) is the bivariate normal cumulative distribution function and
λiϕ,jψ represents the joint probability that obligor i assumes values in scenario
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ϕ and obligor j in scenario ψ. The other component of the covariance reads
explicitly as

E[Li|Y = y]E[Lj |Y = y] =
S∑

ϕ=1

λiϕµiϕ p̂iϕ(y)
S∑

ψ=1

λjψµjψ p̂jψ(y) .

Therefore, the final result is

cov[Li, Lj |Y = y] =
S∑

ϕ=1

S∑

ψ=1

µiϕµjψ λiϕ,jψN2(N
−1(p̂iϕ(y)), N−1(p̂jψ(y)), ρY Ciϕ,jψ)

−
S∑

ϕ=1

S∑

ψ=1

µiϕµjψ λiϕλiψ p̂iϕ(y) p̂jψ(y) .

(24)

Coming back to the original problem of calculating the conditional variance of the
total loss distribution L, we plug eq.s (23) and (24) into eq. (21). Adding and sub-
tracting the contribution corresponding to i = j in the covariance sum, eq. (21) can
be eventually decomposed in terms of its systematic and idiosyncratic components,
namely:

ν∞(y) =
M∑

i,j=1

wiwj

S∑

ϕ=1

S∑

ψ=1

µiϕµjψ λiϕ,jψ N2(N
−1(p̂iϕ(y)), N−1(p̂jψ(y)), ρY Ciϕ,jψ)

−
M∑

i,j=1

wiwj

S∑

ϕ=1

S∑

ψ=1

µiϕµjψ λiϕλiψ p̂iϕ(y) p̂jψ(y) , (25)

and

νGA(y) =
M∑

i=1

w2
i

S∑

ϕ=1

λiϕ(µ2
iϕ + σ2

iϕ) p̂iϕ(y) (26)

−
M∑

i=1

w2
i

S∑

ϕ,ψ=1

λiϕ,iψ µiϕµiψ N2(N
−1(p̂iϕ(y)), N−1(p̂iψ(y)), ρY Ciϕ,iψ) .

The conditional correlation appearing in eq.s (25), (26) is given by formula (9).

4.5 Summary of the results

The final result can be stated as follows: the quantile at level q of the loss distribution
L, tq(L), is given by the approximated formula (17), where

• the asymptotic zeroth order term tq(L) is expressed by eq.s (16), (15)

• the total correction ∆tq is encoded into eq.s (18), (19), (25) and (26).
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5 Numerical analysis

This section is devoted to the numerical implementation of the theoretical model. An
in-depth analysis of the behavior of the approximated value at risk as a function of
the numbers of obligors M and the rating quality of the portfolio has already been
presented in [3]. Those results, though referring to the single scenario case, continue
to hold in the presence of multiple scenarios. Here, we put the focus on the effects of
contagion and different scenarios.

5.1 Portfolio data and parameters of the model

Before entering the details, some general information about the characterization of
the portfolio and the model itself is given, while a detailed description of the pa-
rameters entering the model as inputs and their relationship to observable data are
thoroughly exposed in Appendix A, to which we will refer in the following.

• Loan exposures are assigned following the empirical rule, described for example
in [13], namely EADi = (i3). Such a power law yields a sufficiently granular
portfolio, though ensuring that forM ∼ 100 and above, the loan to one borrower
limit of 4% of the total portfolio size is not exceeded.

• We sort obligors in ascending order with respect to their exposure. We further
assume that the last 20% of them belongs to the group of infecting “I-firms”.

• We consider N = 11 industry-geographic sectors based on the GICS classifi-
cation scheme for sector activities. We assume them to be standardized but
dependent on each others through an appropriate correlation matrix derived
from MSCI EMU industry indices 3.

To make things simpler, we assume that each obligor is associated only with
one sector. The criterion with which this correspondence is established leads to
different distributions of the portfolio loans onto sectors. In the following, we
generally assume a homogeneous distribution, devoting a separate paragraph
to the analysis of sector concentration.

Given this setup, it is straightforward to express each obligor’s asset return in
terms of the independent standardized normal risk factors {Zk}. The depen-
dence of each obligor on these variables is expressed by two parameters:

– the αik coefficients,

– the factor loading riϕ,

whose description can be found in Appendix A1.

• Similarly, for the contagion specification we use the same structure of sectors.
What changes with respect to the plain multi-factor setup is:

– The definition and the values of the “participation” coefficients δCik, mea-
suring how much a company is affected by the infecting segment of a given
sector (see Appendix A2).

3For details, see [6] and [15].
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– The contagion factor loading gi, which is a discretionary parameter.

– We generally assume that only two contagion sectors affect each obligor.
This simplification will be removed in the last paragraph where we explic-
itly study the effects of contagion (a sort of concentration) on the value at
risk.

In order to lighten the computational burden, we classify both δCik and gi into
buckets, e.g. three for the former and one for the latter. Finally, following Ap-
pendix A2, we can express the contagion part of asset returns in terms of the
independent latent variables Ck ∼ N (0, 1), through the coefficients γik.

• The rating quality of the portfolio is directly related to the presence of different
scenarios. To simplify the subsequent numerical analysis, obligors are grouped
into rating classes.

Adopting the specification already employed in [3], based on the subdivision
into 7 rating classes that was originally proposed by Gordy [12], we start from
a particular realization of obligors aggregation (denoted by the superscript “0” ),
which will also be used in the next sections to build new scenarios. Its properties
are listed in Table 1.

AAA AA A BBB BB B CCC
PD ≡ p0 0.01% 0.02% 0.06% 0.18% 1.06% 4.94% 19.14%
µ ≡ µ0 10% 20% 25% 30% 35% 40% 50%

Table 1: Rating classes according to Gordy [12]

We have chosen the LGD mean values so as to have on average µ0 = 30%. The
corresponding standard deviations are set to σ0 = 1/2

√
µ0(1 − µ0).

For notational purposes we group the PD and LGD values into vectors of 7
elements:

p0 = (p0
AAA, p

0
AA, . . . , p

0
CCC)

µ0 = (µ0
AAA, µ

0
AA, . . . , µ

0
CCC)

σ0 = (σ0
AAA, σ

0
AA, . . . , σ

0
CCC)

We now address the core discussion of the numerical analysis. We will be interested
in studying the behavior of the following quantities:

• tq(L) = second order approximated VaR;

• tq(L̄) = zeroth order, asymptotic, VaR;

• ∆Y C = total correction due to multi-factoriality and contagion;

• ∆C = total correction due to contagion;

• ∆GA = granularity adjustment;

• ∆∞ = correction due to multi-sectoriality and contagion, for a portfolio homo-
geneous in the exposures;
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5.2 Scenario specification

As we mentioned above, the scenario framework is rather flexible and naturally leads
to different interpretations. Two of them have been sketched in Section 2 and here
we push the analysis in more depth, by dealing with scenario specifications that are
suitable for the numerical analysis, object of the next paragraphs.

Scenarios and numerical implementations

In the following analysis, we assume that obligors are perfectly correlated with each
others. Therefore, the behavior of a single obligor i in terms of his evolution towards
a scenario ϕ describes as well the behavior of all the other obligors. Expressing this
concept in terms of the joint probability λiϕ,jψ we obtain the relation

λiϕ,jψ = λϕδϕ,ψ , (27)

where λϕ is the probability weight assigned to scenario ϕ (independent of the obligors)
and δϕ,ψ stands for the Kronecker’s delta. Specifying eq.s (25) and (26) in terms of
the new joint probability (27), double sums reduce to single ones. We obtain:

ν∞(y) =
M∑

i,j=1

wiwj

S∑

ϕ=1

µiϕµjϕ λϕ N2(N
−1(p̂iϕ(y)), N−1(p̂jϕ(y)), ρY Ciϕ,jϕ)

−
M∑

i,j=1

wiwj

S∑

ϕ=1

S∑

ψ=1

µiϕµjψ λiϕλiψ p̂iϕ(y) p̂jψ(y) , (28)

and

νGA(y) =

M∑

i=1

w2
i

S∑

ϕ=1

λiϕ(µ2
iϕ + σ2

iϕ) p̂iϕ(y) (29)

−
M∑

i=1

w2
i

S∑

ϕ=1

λϕ µ
2
iϕ N2(N

−1(p̂iϕ(y)), N−1(p̂iϕ(y)), ρY Ciϕ,iϕ) .

Analogously, formulae in Appendix C2 drop the double sums on scenarios and assume
a simpler form.

As already stated in the general theoretical framework, the model deals with sce-
narios defined for each single obligor. However, following the common practice, we
simplify the problem by aggregating obligors into rating classes, thus effectively an-
alyzing joint scenarios, referring to whole classes of rating: this significantly lightens
the computational burden, without being an unrealistic choice. In addition, in the nu-
merical implementation we limit ourselves to a relatively small number of scenarios,
namely up to three.

We propose two different implementations and besides, for comparison’s purposes,
we introduce also the special case when only one scenario is present, characterized
by the vectors (p0, µ0, σ0) and probability weight λ1 = 1. The distribution of obligors
onto the different rating classes (i.e. the elements of (p0, µ0, σ0)) is assumed to be
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that of an average quality portfolio, such that speculative grade loans account for
50% of the total exposure. We label this single scenario case as “Sgl”.

As for the other two implementations, we adhere to the two ways of looking at
the scenarios’ building already introduced in Section 2. In more details:

1. We choose different scenarios where, in each of them, we increment/decrement
the features of all ratings (PDs and LGDs) of some percentage amount, reflect-
ing a worsening/improvement of the general economic situation.

In this picture, obligors do not move from their originally assigned rating class;

2. We interpret scenarios in terms of a particularly simple kind of migration. As
initial state, at time t = 0, we choose the single scenario setup. Changes occur at
time t = 0+ and can be seen as joint migrations of obligors towards other rating
classes. This specification is a simplified case of the general setting including
all the possible scenarios related to the obligors’ migrations (see the remark
below). Namely, as it will appear evident soon, only a very limited subset of the
possible (7+1)7 scenarios is actually selected and the transition time (which in
principle could occur anytime by the end of the time horizon) is fixed at t = 0+.

We can interpret this situation as if rating classes do not modify their features.
What changes is the distribution of obligors across them, mimicking a sort of
migration towards classes different from the original ones.4 That means that
the relative variation of PDs and LGDs is not fixed across classes and obligors
belonging to those at the borders of the rating scale (either the best or the
worst) cannot move beyond such limits.

Remark 5.1. Scenarios and migration matrices. As anticipated in Section 2,
the scenario setting describes the possible evolution of the rating properties of each
obligor (see eq. (1)).

Therefore, if properly chosen, scenarios are apt to define implicitly the transi-
tion probability of each obligor, belonging to a give initial rating class (one of those
belonging to the tern of vectors (p0, µ0, σ0)), towards other rating classes. If we con-
sider the rating specification introduced in the previous section, characterized by 7
rating classes ranging from AAA to CCC (according to typical scorings), at the level
of single obligor, the migration can occur towards (7+1) rating classes, the last one
being the default pseudo-rating class, denoted by D, whose value of PD equals 1 (this
actually resembles the migration matrix associated to a single credit exposure).

At the portfolio level, obligors can be grouped according to their rating features
into rating classes. In this framework, the theoretical model is suitable to describe the
joint evolution of such classes towards others, implicitly defining the corresponding
joint transition probabilities. For instance, in the current setting, the total number of
possible scenarios is equal to (7 + 1)7 ∼ 2 millions. Such a high number is practically
unfeasible to handle; however, it can in principle be reduced by limiting to special
cases of migrations. An example will be shown below.

4In the simulation we present we do not consider the possibility to migrate towards a default class from
any of the other rating classes.
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As for the first type of implementation, we consider the following examples:

1A : (p, µ) =






(p0, µ0) with λ1 = 80%
(p0(1 − 50%), µ0(1 − 25%)) with λ2 = 5%
(p0(1 + 50%), µ0(1 + 25%)) with λ3 = 15%

1B : (p, µ) =






(p0, µ0) with λ1 = 80%
(p0(1 + 20%), µ0(1 + 10%)) with λ2 = 10%
(p0(1 + 50%), µ0(1 + 25%)) with λ3 = 10%

1C : (p, µ) =

{
(p0, µ0) with λ1 = 90%
(p0(1 + 70%), µ0(1 + 35%)) with λ2 = 10%

1D : (p, µ) =






(p0, µ0) with λ1 = 80%
(2p0, µ0(1 + 50%)) with λ2 = 15%
(3p0, 2µ0) with λ3 = 5%

In order to illustrate the second type of implementation, it proves useful to in-
troduce for notational reasons operators which define the transition from one rating
class to another. Let us define P̂k, k = ±1 . . .± 7 such that:

P̂kp
0
j = p0

j+k and P̂kµ
0
j = µ0

j+k

where j indicates the rating class (j = 1 corresponds to AAA, j = 2 to AA and so on)
and we adopt the convention on the signs such that −k stands for an improvement of
k rating classes and +k for a deterioration of k classes. Border values on the rating
scale deserve a special treatment. For example, we set:

P̂−1p
0
1 = p0

1 and P̂+1p
0
7 = p0

7

and so on. We then consider the following cases. At t = 0+:

2A : (p, µ) =






(p0, µ0) with λ1 = 80%

P̂−1(p
0, µ0) with λ2 = 10%

P̂+1(p
0, µ0) with λ3 = 10%

2B : (p, µ) =

{
(p0, µ0) with λ1 = 95%

P̂+2(p
0, µ0) with λ3 = 5%

2C : (p, µ) =






(p0, µ0) with λ1 = 80%

P̂+1(p
0, µ0) with λ2 = 10%

P̂+2(p
0, µ0) with λ3 = 10%

5.3 Scenario analysis

Given the setup of the previous sections, we present the results of our scenario anal-
ysis, based on scenarios of type 1 and 2, introduced in the last paragraph of Section
5.2.
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Scenario M t99.9%(L) t99.9%(L) ∆Y C ∆C ∆GA ∆∞

Sgl 0.0553 0.0357 0.0196 0.0071 0.0120 0.0076
1A 0.0635 0.0378 0.0256 0.0076 0.0125 0.0132
1B 200 0.0618 0.0385 0.0233 0.0076 0.0125 0.0108
1C 0.0647 0.0386 0.0261 0.0076 0.0126 0.0135
1D 0.1086 0.0468 0.0618 0.0093 0.0141 0.0477
Sgl 0.0526 0.0413 0.0113 0.0066 0.0042 0.0070
1A 0.0603 0.0436 0.0167 0.0070 0.0044 0.0123
1B 500 0.0588 0.0444 0.0144 0.0070 0.0044 0.0101
1C 0.0614 0.0445 0.0169 0.0071 0.0044 0.0125
1D 0.1023 0.0535 0.0488 0.0085 0.0050 0.0438
Sgl 0.0516 0.0428 0.0088 0.0063 0.0021 0.0067
1A 0.0592 0.0453 0.0140 0.0067 0.0021 0.0119
1B 1000 0.0578 0.0460 0.0118 0.0067 0.0021 0.0097
1C 0.0604 0.0461 0.0142 0.0067 0.0021 0.0121
1D 0.1002 0.0570 0.0449 0.0081 0.0024 0.0425
Sgl 0.0513 0.0443 0.0071 0.0071 0.0004 0.0067
1A 0.0589 0.0467 0.0122 0.0066 0.0004 0.0118
1B 5000 0.0575 0.0475 0.0100 0.0066 0.0004 0.0096
1C 0.0600 0.0476 0.0124 0.0067 0.0004 0.0120
1D 0.0995 0.0570 0.0425 0.0080 0.0005 0.0421

Table 2: Results obtained for an average quality portfolio, characterized by 7 rating classes,
11 industry-geographic areas and contagion factors, at the level of confidence q = 99.9%.
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Figure 1: Approximated VaR, tq(L), at level of confidence q = 99.9% vs number of obligors
M , for different scenarios of type 1.

VaR decomposition

We start from scenarios of type 1. Table 2 summarizes the main results, including
both the final calculation of the approximated VaR and of its constituent components.
From the data collected in Table 2, we can visualize in Fig. 1 the behavior of the
approximated VaR, tq(L) (q = 99.9%), versus the number of obligors M , for different
scenarios. The red line represents the single scenario situation and given the cases
analyzed it is associated to the lowest VaR. All other cases, except from the most

18



conservative 1D, deviate from the (Sgl) single scenario’s VaR, of about 10÷15%. Case
1D, which entails duplication and triplication of the PDs values, shows a variation
of VaR which is roughly twice as much as the value in the single scenario case.
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Figure 2: Decomposition of the second order VaR, tq(L) into its main components: zeroth
order term tq(L) ≡ l(y), with y = N−1(1− q) and q = 99, 9%, granularity adjustment ∆GA

and multi-factor correction ∆∞.

Fig. 2 shows the decomposition of the approximated VaR in terms of its main
contributions, i.e. the zeroth order term tq(L) and the corrections due to granularity
in the exposures and the multi-factor setup. First, we comment on trends which are
common to all scenarios, then we analyze the behavior of different scenarios:

• while the asymptotic VaR is an increasing function of the number of obligors,
the resulting downward sloping curves in Fig. 1 are due to the effects of second
order corrections. As the number of obligors increases, ∆∞ tends towards a
steady value, while the granularity adjustment becomes progressively negligible
(see Table 2).

• analyzing the influence of different scenario choices, we notice that the major
role is played by the zeroth order term tq(L) and the second order correction
∆∞, the granularity adjustment being only mildly affected by it.

We have performed an analogous analysis on the second type of scenarios, which
involve transitions across rating classes. The results are displayed in Fig. 3. As ex-
pected, though border classes are only partially affected by the presence of different
scenarios, on average the values of the PDs and LGDs vary more drastically in this
framework, leading to higher values of the approximated VaR. In the cases consid-
ered, the single scenario value at risk appears to be doubled or even tripled in the
most conservative case 2C.
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Figure 3: Approximated VaR, tq(L), at level of confidence q = 99.9% vs number of obligors
M , for different scenarios of type 2.

Total approximated VaR vs weighted sum of VaRs

We now compare the results obtained in the theoretical framework, through eq.s
(17), (18), (28) and (29), with the sum of single scenario VaRs, namely [tq(L)]ϕ, each
weighted by the appropriate probability λϕ:

weighted sum =
S∑

ϕ=1

λϕ [tq(L)]ϕ .

Scenario t99.9%(L) weighted sum ∆%

1A 0.0603 0.0553 8.33%
1B 0.0588 0.0562 4.52%
1C 0.0614 0.0563 8.41%
1D 0.1023 0.0664 35.10%
2A 0.0754 0.0553 26.65%
2B 0.1099 0.0598 45.58%
2C 0.1624 0.0728 55.17%

Table 3: Comparison between the approximated VaR, t99.9%(L), and the weighted sum of
individual VaRs corresponding to different scenarios (of type 1 and 2) for M = 500.

Table 3 shows the outcomes for different scenarios of type 1 and 2. The last column
reports the values of the percentage difference obtained as

∆% =
t99.9%(L) − weighted sum

t99.9%(L)
· 100% .

Such a quantity is of the order of 5 ÷ 10% for scenarios which are not too distant
from the single scenario case (e.g. 1A, 1B and 1C), but becomes extremely relevant
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for conservative ones, the discrepancy being more pronounced for scenarios of type
2, where ∆% ranges from about 26% to 55%. Results can be visualized in Fig. 4.
Therefore, the weighted sum over different scenarios may significantly underestimate
the true (and also the second order approximated) value at risk.
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Figure 4: Comparison between the approximated VaR, tq(L) with q = 99.9%, and the
weighted sum of individual VaRs corresponding to different scenarios (of type 1 and 2) for
M = 500.

VaR vs probability weights

We here analyze the behavior of the approximated value at risk as a function of the
probability weights λϕ. In order to keep things simple, we consider cases based on
two scenarios only:

1E : (p, µ) =

{
(p0, µ0) with λ1 = (1 − λ)
(p0(1 + 50%), µ0(1 + 25%)) with λ2 = λ

2D : (p, µ) =

{
(p0, µ0) with λ1 = (1 − λ)

P̂+1(p
0, µ0) with λ2 = λ

Letting λ2 ≡ λ vary from zero to 80% we collect the values of t99.9%(L) in Table 4.

t99.9%(L)
Scenario λ2 = 0% λ2 = 20% λ2 = 40% λ2 = 60% λ2 = 80%

1E 0.0526 0.0621 0.0690 0.0738 0.0768
2D 0.0526 0.0880 0.1077 0.1162 0.1164

Table 4: Approximated VaR, t99.9%(L), for two scenarios, as a function of the second sce-
nario weight λ2 for M = 500.
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Plotting the results in Fig. 5 for cases 1E (green line) and 2D (red line) against the
probability weight λ2, we notice that the relationship between the value at risk and
the probability weight of the second scenario is not linear. All curves are characterized
by a common intercept, viz the value at risk of the single scenario case t99.9%(L) =
0.0526 and λ2 = 0. Upon increasing the value of λ2 curves associated to less dramatic
scenarios appear flatter, in contrast to those describing conservative ones, which
appear immediately steeper and with a higher curvature.
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Figure 5: Approximated VaR, t99.9%(L), for two scenarios, as a function of the second
scenario weight λ2 for M = 500.

5.4 Sector Concentration Analysis

We now investigate the role of sector concentration, focusing on its impact (if any)
on the scenario analysis. The study of the previous paragraph has been conducted
assuming a portfolio of loans homogeneously distributed across industry-geographic
areas. We now consider a portfolio concentrated mainly in two sectors. The compari-
son between the approximated VaR obtained in this case and the one corresponding
to a uniformly distributed portfolio is shown in Table 5 and Fig. 6 for M = 500
obligors, and scenarios of the first type.

Fig. 6 displays on the x-axis different scenarios, ranging from Sgl to 1C. The y-
axis reports the values of the approximated VaR, tq(L). Interpolating the resulting
points for more clarity, it turns out that the corresponding curves run almost parallel.
Therefore, the effect of sector concentration just produces a constant shift in tq(L),
resulting in higher values for more concentrated portfolios, as expected.
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Homogeneous ptf. Concentrated ptf.
t99.9%(L) t99.9%(L)

Sgl 0.0526 0.0638
1A 0.0603 0.0719
1B 0.0588 0.0706
1C 0.0614 0.0731

Table 5: Approximated VaR, t99.9%(L), for different scenarios of type 1, corresponding to
a portfolio of loans homogeneously distributed across sectors and a portfolio concentrated
in two sectors (M = 500).
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Figure 6: Approximated VaR, tq(L) with q = 99.9%, for different scenarios of type 1, cor-
responding to a portfolio of loans homogeneously distributed across sectors and a portfolio
concentrated in two sectors (M = 500).

5.5 Contagion Analysis

We conclude the numerical analysis by studying the effects of contagion. In particular,
we focus on the role played by the number of infecting segments acting on each
obligor. In the previous analysis, to simplify things, we opted for just two contagion
sectors. Here we compare the previous results with those obtained by incrementing
the number of contagion sectors. Explicitly, we consider five and eleven sectors, in
addition to the original two, assuming uniform participation coefficients, δCik, for each
obligor (see Appendix A2). To keep things general we choose two scenarios, Sgl and
1B, and number of obligors M = 500 and 1000.

The complete results are collected in Table 6 while Fig. 7 highlights the main
aspects. The picture shows the behavior of tq(L) (q = 99.9%) and of the total
contagion correction ∆C versus the number of contagion sectors (we connected the
three points with lines). A peak occurs in correspondence of the intermediate number
of sectors (in this case five). This is consistent with intuition. Starting from a low
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Ctg. sectors Scenario M t99.9%(L) t99.9%(L) ∆Y C ∆C ∆GA ∆∞

2 0.0526 0.0413 0.0113 0.0066 0.0042 0.0070
5 Sgl 500 0.0580 0.0413 0.0168 0.0121 0.0042 0.0125
11 0.0484 0.0413 0.0071 0.0024 0.0042 0.0029
2 0.0516 0.0428 0.0088 0.0063 0.0021 0.0067
5 Sgl 1000 0.0569 0.0428 0.0140 0.0115 0.0021 0.0120
11 0.0477 0.0428 0.0049 0.0024 0.0021 0.0028
2 0.0588 0.0444 0.0144 0.0070 0.0044 0.0101
5 1B 500 0.0646 0.0444 0.0202 0.0128 0.0044 0.0158
11 0.0544 0.0444 0.0100 0.0026 0.0044 0.0056
2 0.0578 0.0460 0.0118 0.0067 0.0021 0.0097
5 1B 1000 0.0634 0.0460 0.0174 0.0123 0.0021 0.0152
11 0.0537 0.0460 0.0076 0.0025 0.0021 0.0055

Table 6: Approximated VaR, t99.9%(L), and its components, for different choices of the
number of contagion sectors (2,5 or 11), number of obligors M and scenarios Sgl (single-
scenario) and 1B.
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Figure 7: Approximated VaR, t99.9%(L), and contagion correction ∆C , for different choices
of the number of contagion sectors (2,5 or 11), number of obligors M and scenarios Sgl
(single-scenario) and 1B.

number of sectors, when increasing it, the effects of contagion become more relevant,
till the moment in which sector diversification starts to predominate, thus leading
to a reduction of the contagion adjustment and consequently of the total VaR. This
effect is particularly evident here, given our choice involving uniformly distributed
participation weights.

24



6 Conclusions

This paper deals with the analytical computation of the value at risk for a portfolio
of loans in the presence of credit risk. This approach represents a valid alternative to
otherwise computationally heavy Monte Carlo simulations.

Besides delving into the well known issues regarding concentration risk (single-
name, sector concentration and contagion) already exposed in [3], we propose a new
perspective which allows to model in a more flexible and non static way the rating
properties (PDs and LGDs) of obligors, and the link between the level of default
probabilities and the losses given default. This is achieved through the introduction
of different possible scenarios, each characterized by distinctive rating features and
weight. Each obligor, initially assigned to a rating class, at a successive instant of
time can change his rating properties according to a given set of scenarios. As a
byproduct, PDs and LGDs which are assumed independent in each single scenario,
turn out to be implicitly correlated in the wider picture. This scenario setup is very
rich and flexible, allowing to choose among several structures, amenable of different
interpretations.

In the paper we have shown three of them, including a simplified case which mim-
ics migrations of obligors between rating classes, and the results indicate a noteworthy
increment of the value at risk of a credit portfolio.

Appendix

A Parameters’ description

In this Appendix we provide a detailed description of the parameters which enter
the model as inputs. In particular, we highlight the relationship between such quan-
tities and the data available to banks. In the first paragraph we focus on the inputs
necessary to the multi-factor setting, in the last one we turn our attention to the
parameters defining the contagion specification of the theoretical model.

A.1 Multi-factor parameters

We outline the main steps in order to obtain the standardized asset returns Xiϕ

(eq. (5)), focusing on the multi-factor part only. A thorough analysis about how to
choose industry-geographic sectors from observable data and extract the necessary
information from them (specifically about their distributional properties) can be
found in [16]. Here, we assume this relevant information is already available and we
focus on how to characterize individual obligors’ asset returns through an appropriate
mapping to sectors.

1. Consider a set of N industry-geographic sectors Ik, k = 1, . . . , N , each of which
is assumed to be distributed according to a normal distribution. In matrix
notation, the vector of sectors is I ∼ N (I,Σ), with I the vector of mean values
and Σ the N × N variance-covariance matrix, encoding correlations among
sectors.
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2. We assign weights to each obligor i taking into account:

• its sensitivity to firm-specific, idiosyncratic risk, expressed through the fac-
tor loading riϕ, with 0 ≤ riϕ ≤ 1. For implementation purposes, we choose
to express such a parameter as a function of the probability of default5. In
this way, factor loadings {riϕ} can be grouped into buckets based on the
rating properties of the corresponding obligors.

• its participation in industry and geographical sectors. This feature is cap-
tured by the coefficients δik which appear in the decomposition of the
systematic composite factor Ŷi in terms of the sectors Ik:

Ŷi =

N∑

k=1

δik Ik ,

(the hat symbol indicates the fact that the composite factor is not stan-
dardized yet). The industry participation coefficient δik represents the per-
centage of the business activity of obligor i into the kth sector.

Normally distributed (but not yet standardized) asset returns assume the form

X̂iϕ = riϕ

N∑

k=1

δik Ik +
√

1 − r2iϕ ξi .

3. We are interested in the standardized asset returns Xiϕ. Given

σ̂i ≡

√
var(Ŷi) =

√√√√
N∑

k,l=1

δikδil Cov(Ik, Il) ,

the standardized composite factor reads Yi = (Ŷi −
∑N

k=1 δikIk)/σ̂i, where Ik
stands for the mean value of the industry-geographic sector index Ik. Therefore,
eq. (2) is recovered.

4. The final step consists in expressing Yi as a linear combination of independent
standard normally distributed factors Zk ∼ N (0, 1):

Yi =
N∑

k=1

αik Zk ,

where the coefficients αik must be matched to the parameters δik, ρk,l and σ̂i.
This task can be achieved through the Cholesky decomposition of the vector of
sectors I − I ∼ N (0,Σ), in terms of the matrix A such that I − I = AZ and

5Such a choice mimics the definition of systematic factor loadings proposed by the Basel Committee on
Bank Supervision [20].
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AAT = Σ (e.g. see Glasserman for the Cholesky algorithm [11]). It follows

I1 − I1 = A11Z1 ,

I2 − I2 = A21Z1 +A22Z2 ,
...

IN − IN = AN1Z1 + . . .+ANNZN . (30)

After standardization, we obtain the final result

αi1 =
δi1
σ̂i
A11 +

δi2
σ̂i
A21 + . . .+

δiN
σ̂i

AN1 ,

αi2 =
δi2
σ̂i
A22 + . . .+

δiN
σ̂i

AN2 ,

...

αiN =
δiN
σ̂i

ANN . (31)

By construction,
∑N

k=1 α
2
ik = 1 so that Yi has unit variance.

A.2 Contagion parameters

The parameters to be estimated from market data are the factor loadings {gi} and
the coefficients {γik} which appear in the expansion of the composite contagion factor
Γi in terms of the latent variables Ck. The idea we propose in our model specification,
in order to choose such parameters, is to rely on the information encoded into the
revenues generated by single obligors.

We assume that data about the revenues of each obligor, Ri, are available. In
particular, we assume it is possible to quantify the amount of revenues earned from
transactions with the infecting segment of each sector. Let us call this quantity RIik,
where k = 1, . . . , N specifies the sector and i = 1, . . . ,M the single obligor. The
participation weight δCik, which gives the dependence of obligor i on the infecting
segment of sector k, can therefore be expressed as:

δCik =
RIik
RIi

,

Realizing that the contagion composite factor (not yet standardized) can be written
as

Γ̂i =
N∑

k=1

δCik I
I
k

where, with obvious notation, IIk represents the infecting segment of sector k, and
applying the same Cholesky decomposition derived in the multi-factor case, it is
possible to obtain the sought after contagion coefficients {γik}.
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B Effective factor loadings {aiϕ}

In this section we sketch a derivation of the coefficients {aiϕ} in the most general
case. Simplifications may apply to properly chosen portfolios. Let us start recalling
that, for any scenario ϕ, aiϕ encodes the correlation properties of the asset return
Xiϕ with the effective systematic risk factor Y , i.e.

aiϕ = riϕ corr(Yi, Y ) = riϕ

N∑

k=1

αikbk .

While the coefficients αik are given as an input, the choice of {bk} is not unique.
This follows from the observation that the set {bk} specifies the zeroth-order term in
the Taylor expansion, tq(L), whose only requirements are to be analytically tractable
and close enough to tq(L).

The idea is to find the optimal single effective risk factor Y , which minimizes
the difference between tq(L) and tq(L). A detailed explanation of the necessary op-
timization procedures in the single scenario case is presented in [21]. The result can
be summarized through the following steps:

• define the variable

ci = wi

S∑

ϕ=1

µiϕN



N
−1(piϕ) + riϕN

−1(q)√
1 − r2iϕ



 ,

and express the coefficient bk in terms of ci

bk =
M∑

i=1

ci
Λ
αik ,

where Λ is a Lagrange multiplier to be determined.

• Impose the requirement of unit variance for Y , i.e.
∑N

k=1 b
2
k = 1 and derive the

value of Λ.

• Plug Λ and ci into the definition of bk.

C Formulae

C1 Analytical derivation of tq(L), eq. (16)

We want to prove that
tq(L) = l(N−1(1 − q)) ,

where l(Y ) is defined by eq.s (14) and (15).

We start from the definition of quantile at level q, i.e.:

tq(L) : P(L ≤ tq(L)) = q .
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Therefore, we look for a variable ℓ satisfying

P(L ≤ ℓ) = q . (32)

Applying the definition of L

L ≡ l(Y ) =
M∑

i=1

wi

S∑

ϕ=1

λiϕµiϕ p̂iϕ(Y )

where

p̂iϕ(y) = N



N
−1(piϕ) − aiϕy√

1 − a2
iϕ



 ,

we can rewrite eq. (32) as follows

P




M∑

i=1

wi

S∑

ϕ=1

λiϕµiϕ p̂iϕ(Y ) ≤ ℓ



 = q . (33)

L is a sum of deterministic and strictly decreasing functions p̂iϕ of Y . Moreover L is
bounded, assuming values in the interval [0, ℓ], where

ℓ =
M∑

i=1

wi

S∑

ϕ=1

λiϕµiϕ .

Therefore L = l(Y ) can be inverted and

∃! yℓ :
M∑

i=1

wi

S∑

ϕ=1

λiϕµiϕ p̂iϕ(yℓ) = ℓ ∈ [0, ℓ] .

Expressing eq. (33) in terms of the variable Y , we get

q = P(Y > yℓ) = 1 − P(Y ≤ yℓ) ,

so that ℓ is such that:
P(Y ≤ yℓ) = 1 − q .

Since Y ∼ N (0, 1), the corresponding quantile yℓ turns out to be

N(yℓ) = 1 − q ⇒ yℓ = N−1(1 − q) .

In terms of the original variable L, we get the sought after expression of the quantile:

tq(L) ≡ ℓ =
M∑

i=1

wi

S∑

ϕ=1

λiϕµiϕ p̂iϕ(N−1(1 − q)) = l(N−1(1 − q)) .
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C2 Derivatives of l(y) and ν(y), eq. (18)

l′(y) =

M∑

i=1

wi

S∑

ϕ=1

λiϕµiϕ p̂
′
iϕ(y) ,

l′′(y) =
M∑

i=1

wi

S∑

ϕ=1

λiϕµiϕ p̂
′′
iϕ(y) ,

p̂′iϕ(y) = −
aiϕ√

1 − a2
iϕ

n



N
−1(piϕ) − aiϕy√

1 − a2
iϕ



 ,

p̂′′iϕ(y) = −
a2
iϕ

1 − a2
iϕ

N−1(piϕ) − aiϕy√
1 − a2

iϕ

n



N
−1(piϕ) − aiϕy√

1 − a2
iϕ



 ,

ν ′∞(y) = 2
M∑

i,j=1

wiwj

S∑

ϕ,ψ=1

µiϕµjψ λiϕ,jψ p̂
′
iϕ(y) N



N−1[p̂jψ(y)] − ρY Ciϕ,jψN
−1[p̂iϕ(y)]

√
1 − (ρY Ciϕ,jψ)2



 +

− 2
M∑

i,j=1

wiwj

S∑

ϕ,ψ=1

µiϕµjψλiϕλjψ p̂
′
iϕ(y)p̂jψ(y) ,

ν ′GA(y) =
M∑

i=1

w2
i

S∑

ϕ=1

λiϕ(µ2
iϕ + σ2

iϕ)p̂′iϕ(y) +

− 2
M∑

i=1

w2
i

S∑

ϕ,ψ=1

µiϕµiψλiϕ,iψ p̂
′
iϕ(y)N



N−1[p̂iψ(y)] − ρY Ciϕ,iψN
−1[p̂iϕ(y)]

√
1 − (ρY Ciϕ,iψ)2



 .
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