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Abstract

This paper deals with the effects of concentration (single name and sectoral)
and contagion risk on credit portfolios. Results are obtained for the value at risk
of the portfolio loss distribution, in the analytical framework originally developed
by Vasicek in 1991 [1]. VaR is expressed as a sum of terms: the first contribution
represents the value at risk of a hypothetical single-factor homogeneous portfolio, the
remaining terms are corrections due to contagion, imperfect granularity and multiple
industry-geographic sectors. A detailed numerical analysis is also presented.

1 Introduction

Concentration and contagion risk on credit portfolios have been studied for many
years with different methodologies and approaches. Such risks can be seen as depar-
tures from the Asymptotic Single-Risk Factor (ASRF) paradigm which underlies the
IRB approaches of Basel II [2]. Basic hypothesis of this model include the homogene-
ity of the underlying portfolio and a common factor driving systematic risk.

In this framework, concentration risk represents a violation of the ASFR model
and can be decomposed into two contributions: an idiosyncratic part, single name
or imperfect granularity risk, due to the small size of the portfolio or to the pres-
ence of large exposures associated to single obligors and a systematic term, sectoral
concentration, due to imperfect diversification across sectoral factors. Many portfolio
models have been developed in order to deal with concentration risk (e.g. CreditMet-
rics [3], PortfolioManager [4], CreditPortfolioView [5] etc...) and some of them rely
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on computationally heavy Monte Carlo simulations. A different solution to the prob-
lem of calculating economic capital exploits an approximated analytical technique
which applies to one-factor Merton type models. This method, originally introduced
by Vasicek [1], consists in replacing the original portfolio loss distribution with an
asymptotic one, whose value at risk (VaR) can be computed analytically. The dif-
ference between the true and the asymptotic VaR can also be computed analytically
through a second order approximation [6]. Many steps have been taken in this di-
rection, extending the original Vasicek result for homogeneous portfolios to include
granularity risk [7], [8], [9], [10] and sectoral concentration risk (see Pykhtin [11]).

The third source of risk, credit contagion lies somewhat in-between the previous
two [2]. This risk takes into account the occurrence of default events triggered by
inter-dependencies (legal, financial, business-oriented) among obligors. Very diverse
approaches have been proposed to tackle this problem. Davis and Lo [12] have built
a first model where the default of any company in the portfolio can infect all the
others. Egloff et al [13] have developed a neural-network inspired model to mimic
the structure of links among obligors in a portfolio. Recently Résch et al [14] have
proposed an extension of [12] in a default mode scenario where obligors are divided
into two categories: those who can be considered immune from contagion “I-firms”
(infecting) and those who can be contaminated “C-firms” .

In this paper, we study in a unified framework the effects of concentration and
contagion risk. A first attempt to generalize the work by Pykthin in this direction has
been pursued by [15]. However, the resulting model specification appears incomplete
to some extent and hardly applicable to concrete problems. Here we combine this
idea with the contagion specification proposed by Rosch [14], in order to obtain a
model which is general enough still preserving analytical tractability.

The paper is organized as follows. We first introduce the model in Section 2,
including a detailed specification of the contagion part. We present the core idea
of VaR decomposition and the corresponding analytical results in Section 3 and a
detailed numerical analysis in Section 4. Section 5 summarizes and collects our final
remarks. Technical details and issues can be found in the Appendix.

2 The model

The starting point is a multi-factor default mode Merton model. The portfolio is
assumed to have the following features:

e loans are associated to M distinct borrowers. Each borrower has exactly one
loan characterized by exposure EAD;. We define the weight of a loan in the
portfolio as w; = EAD;/ le\il EAD;

e Each borrower has default probability p; within a chosen time horizon.

e If borrower ¢ defaults, the amount of loss is determined by its loss-given default,
LGD;. Such quantity is assumed to be stochastic with mean p; and standard
deviation o; and to be independent of the other LG Ds and stochastic variables
present in the model.



First we introduce the multi-factor set up, without considering contagion, along the
lines traced by Pykhtin [11]. Subsequently, we extend the model in order to include
the effects of contagion risk.

2.1 Multi-factor model specification

Asset returns {X;};—1, a are assumed to be distributed according to a standard
normal distribution and to be linearly dependent on N normally distributed system-
atic risk factors. Expressing the contribution coming from these sectoral factors in
terms of a composite variable {Y;};=1 ., one for each borrower, the behavior of the
ith borrower’s asset return is

X =rYi+4/1—-1r2%. (1)

r; is the sensitivity of borrower i to the systematic risk, corr(X;, X;) = p; ; and & ~
N(0,1), i.i.d, represents the idiosyncratic component of risk which can be diversified
away in the case of an infinitely granular portfolio. The composite factor can be
expressed as a linear combination of N independent systematic factors Z ~ N(0,1),
k=1,...,N

N
Yo=Y airZ, (2)
k=1

and it is assumed to have unit variance, i.e. Zszl a2 = 1. It turns out that asset
returns can be cast into the general form

N
Xi = ai? + Z(riaik — aibk)Zk +4/1 - TZ-Z fz . (3)
k=1

This formula can be analyzed as follows:
e the last term is the idiosyncratic component already discussed.
e The first two terms account for the systematic (sectoral) risk contribution.
-Y = Zévzl bpZ is an effective systematic factor, characterized by unit
variance i.e. Zszl b? = 1. The coefficients {a;} are effective factor loadings,
given by a; = r; Z,]g\;l a;bi.. They can be derived through an optimization
procedure, as shown in [11].

— The second term Zfev:l(ma,;k — a;b)Zy, is independent of Y and encodes
the conditional asset correlation

y Tt D Qakk — @iy (1)
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2.2 Credit contagion

Contagion risk can be ascribed to inter-company ties, such as legal (parent-subsidiary)
relationships, financial and business oriented relations (supplier-purchaser interac-
tions) and so on. This entails a complex network of links among obligors, which
makes the credit contagion problem very hard to solve.

Here we adopt a simplified perspective. We assume that obligors are broadly
divided into two categories: those firms which are immune from contagion (referred
to as “I-firms”, i.e. infecting) and those companies which can be contaminated by
the first group through credit contagion (“C-firms”). Asset returns associated to
group “I” follow the multi-factor specification given by eq. (1) while “C-firms”’
asset returns satisfy

Xi=rYi++/1—-r?2¢&T,€). (5)

The firm-specific factor £(T';, ;) can be expressed as
E(Ts ei) = gili + /1 — g7 e (6)

e ¢; is the usual idiosyncratic contribution,

where

e the term ¢;I'; encodes the effects of contagion risk. The composite contagion
factor T'; can be written as a sum over latent contagion variables C; (assumed
to be independent and distributed as A/(0, 1))

N
=) 7C.
=1

The unit variance property of X; is preserved if Z{L fyfl = 1. We assume that
companies can be mapped into the industry-geographic sector with which they
have the highest correlation and we decompose each sector into a “I” segment
and a “C” one. Therefore, the contagion effect experienced by an arbitrary “C-
firm” can be thought of as the weighted sum of contributions coming from the
infecting segments of different sectors. Under this specification, the number of
latent contagion factors equals the number of industry-geographic factors, N.
The coefficient g; plays the role of a contagion factor loading and represents
a measure of how much obligor ¢ is overall affected by contagion. It is worth
noticing that eq.s (5-6) express in compact form also the behavior of “I-firms” ,
with the understanding that g; = 0 in that case. We will come back to the
estimation of the contagion parameters in the Appendix.

Having specified the model in this way, by making explicit the effects due to multi-



factors and contagion, asset returns turn out to follow

N
Z QL — azbk Zy +
k=1

\V1-77 g Z YitCr + (7)

V1I=r2\/1—g?¢ .

The conditional correlation between distinct obligors ¢ and j assumes the form

Yio rir; Zk 1 Qg + \/ 1- 7' \/ T 9i9; Zl 1 Vil — aza]

P = 5)
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3 VaR decomposition and results

Given this setup, the portfolio loss rate L can be written as

M M
L= Z szz = Z (1 1{XiSN71(pi)} LGDZ . (9)

i=1 i=1

Our goal is to calculate the quantile at confidence level ¢ of this quantity, namely
tqy(L). It has been shown ([8] and [6]) that such a task can be accomplished through
a Taylor expansion around the quantile of another variable L, such that tq(f) is
analytically tractable and sufficiently close to t,(L). The results in the multi-factor
case and in the model with contagion are collected in the next two subsections.

3.1 Multi-factor model

Let the variable L be defined as the limiting loss distribution in the one-factor Merton
framework

M
V) =Y wipp(Y), (10)
i=1
where p;(y) is the probability of default of borrower i, conditional on Y = y

N~ (p;) — azy
\/1—a?

(N indicates the cumulative normal distribution). The quantile of L at level ¢ can
be calculated analytically as

pily) =N (11)

to(L) = UN"'(1~q)).



Carrying out the Taylor expansion of t,(L) around t4(L), first-order contributions
cancel out and the final result, up to the second order, assumes the form [11]

Atq =ty(L) —to(L) = _2l’1(y) {V/(y) W <ll///((yy)) ! y>} ‘le(l—Q) "

The function [(y) is defined as in (10), while v(y) = var[L|Y = y] is the conditional
variance of L on Y = y. This function can be further decomposed in terms of its
systematic and idiosyncratic components

v(Yy) = veo(y) + vca(y) (13)
where
Voo(y) = var[B(LH{Z DY =y] = (14)
M M
= Z Z wiwjpige; [N2(N " pa(y)], N7 B ()], p)) — bi(w)pi(w)]
i=1 j=1
vaaly) = Epar(L{Zp})|Y =y] = (15)

M
= > w? (1 [pily) — Na(N " [pi(n)), N~ [pi(w)], p))] + o2i(y)) -
=1

(Na(.,.,.) is the bivariate normal cumulative distribution function). The first term,
Voo(y), accounts for the correction to the loss distribution due to the multi-factor
setting, in the limit of an infinitely fine-grained portfolio. vga(y) is the granularity
adjustment term. The quantity p}-lf- is obtained by replacing the index j with 7 in eq.
(4). In the special case of homogeneous LG Ds and default probabilities p;, it becomes
proportional to the Herfindahl-Hirschman index HHI = Zf\il w? (see [9]).

Explicit expressions for the derivatives of /(y) and v(y) can be found in the Ap-
pendix.

3.2 Contagion effects

Repeating the analysis performed in the previous paragraph, the results obtained for
the multi-factor set up can be easily extended in order to include contagion risk.

Eq. (12) is still valid, with the understanding that now the conditional variance
v(y) must be replaced by

v (y) = v (y) +véaly) s
where
vi(y) = var[E(L{Z, C}IY =y] = (16)
M M
= > D wwjpipy [N2(N_1[ﬁi(y)]’ N7 )] 0379 = hiw)ps ()|
i=1 j—1



vialy) = Elvar(L{Zy, C})Y =y] = (17)
M
= Zw? (u? [ﬁi(y) —~ NQ(N’l[ﬁi(y)LN’l[ﬁi(y)]m??w)} +03ﬁi(y)> :

In this case, v encodes the correction to the loss distribution due to multi-factor

and contagion effects, in the limit of an infinitely granular portfolio. I/g 4 represent
the granularity contribution. The conditional correlation appearing in eq.s (16-17) is
now given by formula (8).

4 Applications

This section is devoted to applications of the theoretical model and numerical ex-
amples. In the first subsection we show and comment upon the results we get, high-
lighting the role played by the numerous parameters which specify the model. In the
second part, we compare the values of the value at risk we obtain with those derived
through Monte Carlo simulations by Gordy (2000) [16] and Carey (2001) [17]. As it
will be evident, the agreement is very satisfactory.

4.1 Numerical analysis

We aim at showing how the value at risk calculated through the approximated formula
at the second order, eq. (12), behaves as a function of the parameters which define the
model. In particular, we focus on the number of obligors M, the number of systematic
risk factors N (which also affects the contagion specification) and the rating quality
of the portfolio. However, before entering the details, some general information about
the characterization of the portfolio and the model itself is needed.

Portfolio data and features of the model

e Loan exposures are assigned following the rule EAD; = i® [9]. For M ~ 100
and above, the loan to one borrower limit of 4% of the total portfolio size is not
exceeded.

e We sort obligors in ascending order with respect to their exposure. We further
assume that the last 20% of them belongs to the group of infecting “I-firms”.

e In the following, we assume for sake of simplicity that industry-geographical
sectors are already expressed in terms of independent standardized normal risk
factors (the {Z.} variables of the theoretical model)!.

The information about the dependence of single obligors on these factors is
encoded into obligor/sector correlation coefficients, i.e. pjr = riour, where ¢

'The most general case of dependent sectors can be reduced to this simplified scenario by means of

a Cholesky decomposition of the variance-covariance matrix or through the principal component analysis
(PCA).



represents the i-th obligor and k the sector. Assuming that banks have these
kind of data at their disposal, we further simplify the model by introducing
“classes of correlation”. For instance, if we only considered three classes (low,
average and high correlation), we would assign all correlations below 33% the
value p;r = 16.5%, those between 34% and 66%, p;r = 49.5% and so on. Given
the coefficients p;i, the factor loadings r; can be easily deduced by observing
that 7"12 = chvzl pfk. In an analogous way, «;; can be derived from p; = r; ;.

(In the following analysis we consider five “correlation classes”.)

e Very similar observations can be applied to contagion factors. For simplicity,
also latent variables C; are assumed to be ~ A (0,1) i.i.d.

The coefficients ~;;, which encode the dependence of single obligors on the
infecting segments of each industry-geographic area, are grouped into classes as
well. However, they satisfy a different constraint, Zé\;l 72 = 1. (Also in this
case, we opt for five “contagion classes”.)

In the contagion specification, we are left with another parameter, to be chosen
at each bank’s discretion: the factor loading g;. Similarly, we group its possible
values into five classes.

e As far as the quality of the portfolio is concerned, we consider three different
possibilities, based on a seven rating classes subdivision (see Gordy 2000 [16]
for details):

1. high quality portfolio, characterized by a percentage of speculative grade
loans (BB and below) less than 25%,

2. average quality portfolio, such that speculative grade loans account for 50%
of the total exposure,

3. low quality portfolio, made up of roughly 79% of speculative grade loans.
This can be visualized in Fig. 1:

e Eventually, following the specification introduced by Gordy 2000 [16], we choose
a constant LG'D mean value, across different rating classes, given by p; = 30%.
The corresponding standard deviation turns out to be o; = 1/24/u; (1 — p;)
0.229.

We now address the core discussion of the numerical analysis.

VaR vs number of obligors

We assume an average quality portfolio, characterized by N = 5 industry-geographic
sectors, and, correspondingly, five latent contagion risk factors. We fix the confidence
level at ¢ = 99.5% and calculate the value at risk for M, the number of obligors,
ranging from 100 to 1000. We store the results in Table 1:

The first column collects the Hirschmann-Herfindahl index (HHI) for each sce-
nario, giving an idea of the granularity of the underlying portfolios. As it appears
clearly, upon increasing the number of loans, M, such a contribution becomes less
relevant.
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O AAA
B AA
OA

0O BBB
B BB
oB

ECCC

gl |
[

0% 20% 40% 60% 80% 100%

Figure 1: Subdivision into seven rating classes for a high (1), average (2) and poor (3)
quality portfolio.

HHI VaRgg 59 Ayco Ao Aga JANSS cpu-time
M=100 0.0227 0.0386 0.0175 0.0014 0.0151 0.0024 41.0190
M=200 0.0114 0.0288 0.0112  0.0022 0.0079 0.0034 162.8141
M=500 0.0046 0.0252 0.0059  0.0020 0.0030 0.0029  1020.0000
M=1000 0.0023 0.0225 0.0048 0.0024 0.0015 0.0033 4100.0000

Table 1: Results obtained for an average quality portfolio, characterized by seven rating
classes, five industry-geographic areas and contagion factors, at the level of confidence
q = 99.5%.

The following columns contain respectively the value at risk of the loss distribu-
tion L, given by the approximated formula (12) in the presence of sector and con-
tagion risk, and the correction to the homogeneous single-factor asymptotic VaR,
decomposed into its main contributions:

e Ay = total correction due to multi-factor and contagion;
e A¢ = total correction due to contagion;
e A4 = granularity adjustment;

e A, = correction due to multi-sector and contagion, for a homogeneous portfo-
lio.

Results from columns (2) and (6) are represented graphically in Fig. 2

As it emerges from the picture, the value of VaRgg 594 = tgg 5% (L) decreases of
about 160 basis points, moving from 100 obligors to 1000. This behavior is consistent
with the fact that the portfolio becomes more homogeneous as the number of loans
increases, leading to a diminishing granularity adjustment.

The corrections due to the multi-sector set up and the effects of contagion are
only mildly affected by the number of obligors.
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Figure 2: Approximated VaRgg 50 and granularity adjustment as a function of M (number
of obligors), for an average quality portfolio, characterized by seven rating classes, five
industry-geographic sectors and contagion factors.

VaR vs number of sectors

We now let the number of systematic risk factors vary from 1 to 10. The results for
an average quality portfolio, characterized by M = 300 obligors (HHI = 0.0076)
and level of confidence g = 99.5% are summarized in Table 2:

tq(L) VaRgg 5% Avyce Ao Aca JANSS
N=1 0.0370 0.0442 0.0072  0.0035 0.0036 0.0037
N=2 0.0300 0.0371 0.0071  0.0029 0.0038 0.0033
N=6 0.0153 0.0238 0.0085 0.0016  0.0060  0.0025
N=10 0.0116 0.0226 0.0110 0.0018 0.0081  0.0029

Table 2: Results for and average quality portfolio, characterized by seven rating classes,
M = 300 obligors (HHI = 0.0076) and level of confidence ¢ = 99.5%.

The first column displays the data corresponding to the homogeneous, single-
factor VaR, t,(L). As it appears clearly, upon increasing the number of sectors,
diversification benefits turns out to play a central role. This effect is particularly
evident in the asymptotic component ¢,(L), thanks to the effective factor loading a;,
which takes into account the combined contribution of all sectors (see Section 2).
The result is shown in Fig. 3.

We eventually notice that the correction A, directly related to the multi-sector
set up, assumes almost constant values. This is consistent with our choice, at the level
of simulation, of picking N sectors globally, but requiring each obligor to interact with
at most two industry-geographic areas simultaneously. Similarly, we have chosen each

“C-firm” to be infected by at most three infecting segments beyond the one in its own

10
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Figure 3: Approximated VaRgg 5% as a function of N (number of sectors) for an average

quality portfolio, characterized by seven rating classes and M = 300 obligors (HHI =
0.0076).

sector. Therefore, also the effects of contagion risk my appear somehow “diluted”, as
the number of factors IV increases.

VaR as a function of the portfolio quality

We conclude by analyzing the effects of rating on the value at risk. We consider
M = 300 obligors, N = 6 systematic and contagion risk factors, and different values
of q. We refer to Fig. 1 for the quality properties of the portfolios, in terms of seven
rating classes.

We collect the results in Tables 3-5.

High Qlty  VaRg9s54  Ayc Ac Aga A
q=99% 0.0099 0.005 0.00093 0.0037 0.0013
q=99.5% 0.0114 0.0055 0.00098 0.0041 0.0015
q=99.9% 0.0156 0.0068 0.001 0.005 0.0018

Table 3: Results for a high quality portfolio (25% of BB and below), characterized by seven
rating classes, M = 300 obligors (HHI = 0.0076).

Ave Qlty  VaRgg 59,  Ayc Ac Aga Ao
q=99% 0.021 0.0078 0.0015 0.0055 0.0023
q=99.5% 0.0238 0.0085 0.0016 0.006 0.0025
q=99.9% 0.0307 0.0103 0.0017 0.0075 0.0029

Table 4: Results for an average quality portfolio (50% of BB and below), characterized by
seven rating classes, M = 300 obligors (HHI = 0.0076).

11



Low Qlty  VaRggs5%4  Ayc Ac Aga Ao
q=99% 0.0324 0.0098 0.0027 0.0061 0.0037

q=99.5% 0.0363 0.0108 0.0029 0.0068 0.004

q=99.9% 0.0453 0.0131  0.0031 0.0088  0.0044

Table 5: Results for a low quality portfolio (79% of BB and below), characterized by seven
rating classes, M = 300 obligors (HH I = 0.0076).

The results are consistent with the fact that, upon increasing the quality of port-
folio loans, VaR, decreases as well as the correction with respect to the asymptotic
value at risk.

4.2 Comparative analysis with Monte Carlo simulations

We conclude the numerical analysis by comparing our results with those obtained
through Monte Carlo simulations. In particular, we refer to the works by Carey
(2001) [17] and Gordy (2000) [16]. The former offers a very detailed description of
the simulation and the underlying portfolio, the latter presents a comparative analysis
between the the CreditMetrics [3] and CreditRisk+ [18] models.

Before entering the details of the discussion, we must stress that the works we
refer to use an approach which is not based on the decomposition of the value at
risk into its asymptotic part and corrections (they actually appeared before the huge
literature on this topic). Their methodological framework relies on the simulation of
the “true” loss distribution, through generation of numerous scenarios. However, our
model, by construction, is flexible enough to allow for a satisfactory correspondence
with both [17] and [16].

Carey 2001

Carey assumes a portfolio with the following features (see Table 1 in [17]):
e default-mode credit model,
e flexible number of obligors, but close to 500,
e maximum loan to one borrower limit in the exposure of about 3%,

e portfolio quality as expressed in Table 6 (following Moody’s criteria),

Rating
>A 20%
Baa 30%
Ba 35%

B 15%
Table 6: Portfolio decomposition into rating classes used by [17].

e LGD characterized by mean value u = 37%, constant across rating classes.

12



Setting up a comparable (though not perfectly matched) portfolio, fixing M = 500
and letting the confidence level ¢ vary, we obtain the following results for the value
at risk:

q=95% q=99% ¢=99.5% q=99.9%
Carey 0.0187 0.0271 0.0304 0.0387
Modello 0.0153 0.0229 0.0263 0.0343

Table 7: Comparison between the analytical results of our model and the outcomes of the
Monte Carlo simulation, performed by Carey [17]

Despite the impossibility to reproduce exactly the portfolio used by Carey, the two
models produce values of the VaR which agree on the second digit, the discrepancy
being of about 30 = 40 basis points.

Gordy 2000

We now compare our model with those analyzed by Gordy [16], namely

e the so called “restricted” CreditMetrics (CM2S), which only accounts for default
events, without considering migrations across rating classes,

e a version of CreditRisk+ (CR+) [18], characterized by a single systematic risk
factor, distributed according to a gamma distribution, with unitary mean and
standard deviation o. We stress that the parameter ¢ can be chosen in an
arbitrary way, affecting the final value of VaR to a certain degree.

Gordy considers portfolios of M = 5000 loans, of different credit quality, according
to the distributions into rating classes proposed in Fig. 1. The mean value of the loss
given default is taken equal to u; = 30%. Systematic factor loadings r; are set to
particular values, collected in Table 2, [16]. The numerical analysis is then performed
for two different scenarios: the homogeneous portfolio case and in the presence of
imperfect granularity.

We can reproduce quite accurately the data of the homogeneous case. We assume
a portfolio which match closely that by Gordy, except for the number of obligors (we
fix M = 400). The results are summarized in Table 8.

CR+
Model CM2S o=1.5
q=99.97% 0.0264 0.02649 0.03187
q=99.5% 0.0174  0.01747  0.02009
q = 99% 0.0153  0.01527 0.01728

Table 8: Comparison between the VaR of our model and those obtained by Gordy [16], for
a homogeneous portfolio.

The agreement, especially with the CM2S model, obtained through Monte Carlo
simulation, is excellent.
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We conclude, by comparing the results for a portfolio with granularity. Gordy
proposes a calibration of the exposures, based on rating [16]. We limit ourselves to
keep our specification of granularity, previously exposed (for M = 400 obligors), and
collect the results in Tables 9-11:

CR+ CR+ CR+

Model CM2S oc=1 o=1.5 o=4
q=99.97% 0.0341 0.02714 0.02736 0.03225 0.05149
q=99.5% 0.0226  0.01795 0.01847 0.02033  0.02488
q = 99% 0.0199 0.01578 0.01628 0.01749 0.01916

Table 9: Comparison between the VaR of our model and those obtained by Gordy [16], for
an average quality portfolio with granularity.

CR+ CR+ CR+

Model CM2S oc=1 o=1.5 o=4
q=99.97% 0.0462 0.04558 0.04877 0.05770 0.09251
q =99.5% 0.0323  0.03124 0.03320 0.03664  0.04504
q=99% 0.0288 0.02782 0.02936 0.03161  0.03481

Table 10: Comparison between the VaR of our model and those obtained by Gordy [16],
for a poor quality portfolio with granularity.

CR+ CR+ CR+

Model CM2S oc=1 oc=1.5 o=4
q=99.97% 0.0198 0.01342 0.01277 0.01490 0.02345
q = 99.5% 0.0125 0.00847 0.00850 0.00928  0.0121
q = 99% 0.0108 0.00733 0.00745 0.00794  0.00858

Table 11: Comparison between the VaR of our model and those obtained by Gordy [16],
for a high quality portfolio with granularity.

Despite the fact that our model and those analyzed by Gordy are specified in a
different way, we obtain values of the VaR which are compatible, reaching a satis-
factory agreement in the case of a low quality portfolio.

5 Conclusions

In this paper we have shown how to compute analytically the value at risk for a
portfolio of loans, non homogeneous in the exposures and in the presence of both
multiple industry-geographic sectors and contagion risk.

The key idea consists in approximating the “true” VaR as a sum of terms: the
first contribution is the asymptotic VaR, pertaining to the limiting case of a single-
factor homogeneous portfolio (ASRF), the remaining terms are the corrections due
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to granularity and the multi-factor set up. Contagion risk affects the adjustments,
but do not have any impact on the asymptotic component of value at risk.

An important aspect of the model proposed is that it allows to obtain good
estimates of the value at risk, without relying on time consuming Monte Carlo sim-
ulations.

Appendix

A Contagion parameters

The parameters to be estimated from market data are the factor loadings {g;} and
the coefficients {~; } which appear in the expansion of the composite contagion factor
I'; in terms of the latent variables (. The idea we propose in our model specification,
in order to choose such parameters, is to rely on the information encoded into the
revenues generated by single obligors.

We assume that data about the revenues of each obligor, R;, are available. In
particular, we assume it is possible to quantify the amount of revenues earned from
transactions with the infecting segment of each sector. Let us call this quantity Rilk,
where k = 1,..., N specifies the sector and i = 1,..., M the single obligor.

The coefficient v;; can be expressed in terms of the revenues data as follows

Ry
R;’

Yik =C

where the proportionality constant is set to the value

1
N (RL)? .
i ()

In this framework, we assume the factor loading g; to be a discretionary parameter,
which measures the overall sensitivity of obligor ¢ to contagion risk.

C:

B Derivatives of /(y) and v(y), eq. (12)

In order to calculate At, according to eq. (12), we also need explicit expressions for
the derivatives of I(y) and v(y). Given eq.s (10), (11), (14) and (15), the derivatives
read

M

U(y) = wipipi(y),
=1
M

U(y) = wi i b (y),
=1

a; N=Y(p;) — ay
n b)
1—a? \/1—ad?
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N

pi(y) = —




A(y) = — a;  N"'(pi) — ay n N~ (pi) — aiy ’

2
1 —a; \/1—a? \/1—a?

—174. 1
—2zzwzwgum]pz W | v N=pi ()] = pi; N~ pi(y)] 5w

i=1 j=1 1_(pij)

Vé;A(y)=§:w?ﬁ;(y) P2 |1-2N Npi(y)] = pii N pi(y)] o2
' 1_(Pii)

In the presence of credit contagion, all of the above formulas are easily generalized

Y+C

by replacing pl] with p;; ™.
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