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Abstract

We introduce a set of models that explain the market phenomenology of Libor
forward �xings implied in swap prices. The models are all based on the idea that the
Libor �xings refer to a panel of primary banks whose composition may change over
time. This e�ect is crucial to obtain the observed humped forward �xing curves, that
could not be otherwise retrieved by a simple credit default model or by a forward
interest rate analogy. The models di�er only in the assumptions on how the panel
composition will change in the future.

1 Introduction
Since the �nancial crisis started in 2008 the Libor-Ois basis have been no more
negligible: this implies a major change in the evaluation ofinterest rate derivatives
and as a consequence the single curve interest rate models have become obsolete.

Ois rates can be approximately considered default risk-free due to the fact that
they are derived from overnight deposit rates: therefore they embed the risk of
default overnight even when they are the reference rate for longer maturities, e.g.:
an Ois swap expiring in 10 years.
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Figure 1: Swap rate rates dealing in the market on November 1st , 2014 (left hand side)
and implied Euribor-Eonia basis curves (right hand side). Source: swap indicative quotes
provided by major brokers.

Libor spot and forward rates embed the risk that the borrower (a major bank
belonging to the relevant Libor panel, depending on the currency the debt is de-
nominated in) may go bankrupt before the expiry of the deposit. As such, a Libor
rate for, say, a 6-month deposit, include a spread over the 6-month Ois rate to re-
munerate the lender for the risk of the borrower's default over next 6 months. The
Ois-Libor basis is typically increasing with maturities (f rom the O/N to 1 year) for
spot Libor rates: one would expect also a similar behaviour for forward Libor rates,
quoted as FRAs up to 24 months and implied in swap rates for longer maturities,
but this is not what market rates exhibit.

It is now well known that the forward basis curves, for all tenors, show a
\humped" shape: this phenomenon has been documented by someauthors (see,
for example, Morini [7] and Ametrano and Bianchetti ([1], �g ure 35). They �nd
that the basis curves are initially increasing until a certain future time, and then
they start decreasing monotonically onwards, until an asymptotic value of a few
basis points is reached. A con�rmation of the persistence ofthis feature, even in
a �nancial environment with lower rates and Libor-Ois basis than the one dealing
in the period 2008-2010, is given in Figure 1, where we show the market rates in
the EUR for swaps vs 3M, vs 6M, and Eonia on November 1st , 2014: from these
quotes we show a very basic bootstrap of the basis Euribor 3M-Eonia and Euribor
6M-Eonia.

Although the \humped" pattern in both curves is easily recognisable, it is worth
noting that the basis curves are very irregular even before the 10 year maturity,
where the market is quite liquid and active. The weird slopesof the two curves be-
come apparent around the 15 year maturity, where the market trades less frequently.
Seemingly regular swap rate curves can generate greatly inconsistent shapes of the
basis curves. A general model, based on grounds beyond the simple smoothing crite-
ria, can be useful also to regularise, interpolate and extrapolate the Libor-Ois basis
curves by �tting it to more liquid tenors.

Previous Basis Spread Modelling includes the works by Mercurio [5] and Moreni
and Pallavicini [6]. In the �rst one, the author derives pric ing formulae for linear
and volatility derivatives, assuming stochastic dynamicsfor the single forward Libor-
Ois basis, but no connection is established amongst spreadson the di�erent relevant
tenors (i.e.: 1, 3, 6, 12 months) and di�erent future times. In the second work, the
authors extend the HJM framework to account for a multi-curve environment: the
model establishes a link amongst the forward Libor �xings at di�erent future dates
on the same tenor by means of their dependence on two common stochastic state
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variables, whose dynamics are capable to capture the nowadays typical humped
term structure. The link between the Libor on di�erent tenor s is established via
two deterministic scaling functions for the rate level and the volatility level. The
framework is enough 
exible to �t market prices, but no �nanc ial or economic
rationale lies behind the type of functions and links chosenby the two authors.

In general, the approaches to model Libor-Ois basis proposed so far by market
practitioners and academicians aim just at matching market prices, usually with
ad hoc assumptions, without trying to explain the evolution of the spreads by the
credit factor that they represent. Although these approaches can be fully justi�ed
on the grounds of the their e�ectiveness to the purpose, nonetheless they rely on the
existence of a liquid market where all types of main instruments (FRAs, swaps on
Libor with all the tenors, Caps&Floors) are actively traded and quoted. When the
market is not so liquid on some instruments (e.g.: swaps vs 1M Libor for maturities
longer than 1 year), a general model can be used to evaluate them, even if it is
calibrated on the traded liquid instruments. Clearly, this means that the model is
able to deduce the Libor-Ois basis for any future date and on any tenor, which
implies it is based on the common risk factors driving all thespreads.

In what follows we introduce a uni�ed set of models that are able to reproduce the
\humped" shape of forward basis, yet that are capable to match the upward sloping
basis curve for spot starting deposits. The models have somenice properties: i) they
are based on the default risk generating the spreads, ii) they model simultaneously
basis for all the (major) tenors (1, 3, 6 and 12 months), iii) they all rely on the
factual assumption that the panel of banks, whom the Libor refers to, may change
over time and that the any defaulting, or credit worsened, entity can be replaced
within the panel itself.

2 The Main Idea Underpinning the Frame-
work
The Libor rates can be thought to be made of two components: i)a risk-free part,
generally considered to be equal to the Ois rate for the corresponding expiry, and ii) a
credit spread that remunerates the lender for the credit risk it bears in lending money
to a defaultable borrower. In our framework, the (Ois) risk-free rate is modelled as
independent of credit spread; moreover, the credit spread is typically referred to in
the market lore as the Libor-Ois basis. Besides, we will consider four major tenors:
1M, 3M, 6M and 1Y, used in most contracts; other spreads can bederived within
the approach that we will outline, although they are less used as a reference index in
interest rate derivatives. Additional factors, such as liquidity risk, are not directly
considered in this set of models, although their inclusion is possible.

Classical credit spread models that consider a single counterparty, whose default
is commanded by a stochastic default intensity, generate a set of monotonically
increasing credit spread curves, starting from di�erent initial values (spot spreads)
for our four tenors and reaching a common asymptotic value. An example is shown
in Figure 2.

Unfortunately this is not the type of term structures we observe in the market.
The Libor-Ois (credit spread) basis does not simply represent the risk related to a
single counterparty. Actually, the Libor rates are the interest rates, for the relevant
maturity and currency, that a panel of major banks is expected to pay when bor-
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Figure 2: Forward credit spreads for deposits with respectively 1M, 3M, 6M and 1Y
maturity, derived by assuming a stochastic default intensity that follows a CIR process
of the type in equation (29), with parameters� 0 = 0:06%; � = 1:5; � = 1:0%; � = 5:0%.

rowing money from a similar institutional counterparty. Fo r reasoning's sake, let us
think of the Libor panel as identi�ed by a single representative bank.

The representative bank of the Libor panel is an entity whosedefault risk may
structurally change over time. By \structural change", we d o not simply mean the
possibility that the default probability may stochastical ly evolve over time; we also
mean that, since the representative bank is a sort of averagesynthesis of the default
risks of the banks included in the panel, if the panel changesin its composition,
then also the default risk of representative bank will change as well. This happens
even if the probabilities of default of the banks currently included in the panel, and
of the banks currently excluded, but which could potentially replace some of the
former ones, are deterministic and known.1

To make things concrete, suppose the Libor panel is made of 10banks all with
a probability to go bankrupt over next year equal to 1%: the representative bank
will trivially have a 1-year default probability of 1%. Assu me now a bank replaces
one of the current ones belonging to the panel, and let its default probability for 1
year be 0.8%. The representative bank should now have a 1-year default probability
of 0:98%. Hence, its default risk has changed even if we did not assume any deter-
ministic or stochastic evolution of the default probabilit ies of all the banks, either
included or outside the Libor panel.

In the real world, when one of the banks currently belonging to the Libor panel
experiences a worsening of its credit standing or even, in the extreme case, a default,
then it is expected to be replaced by a new external bank, witha good credit stand-
ing that will likely improve the average credit quality of th e panel. As a consequence,

1We do not claim we are introducing some revolutionary idea here: we are simply trying to expose
what is very likely the way market agents (traders) think when they need to make a price for a spot
starting deposit or for a FRA. Similar explanations of the Libor panel composition, and change of it,
have been proposed also in older works, such as in Morini [7].
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one would expect the credit spread of the representative bank to be lower.
The possibility that the panel changes its component banks is crucial to account

for the humped shape of the forward Libor-Ois basis. Actually, restricting the ob-
servation to daily published Libor �xings, one immediately realise that Libor-Ois
basis are increasing with the maturity of the deposits. Thismeans that the market
expects a rising probability of default over time. This is not very strange, as credit
spread curves for single debtors, either corporates or banks, usually show the same
upward slope. One would expect that the Libor-Ois basis for future dates (embed-
ded in the forward rates applied to forward starting deposits) show an upward slope
too; on the contrary, the prices of FRAs and of swaps quoted inthe market imply a
downward slope of the forward rates, after an initial increase up to the maturities of
3 - 5 years. Besides, even if market forward spreads are raising, they do not re
ect
the forward spreads implied in the Libor spot rates (see, forexample, Mercurio [4]).

From this phenomena, it is possible to deduce the reasoning the lenders follow
in setting spot and forward rates: if one has to lend today (spot) a given amount
of cash to a bank of the panel, she knows exactly which is the default risk she
would bear. This risk is condensed in the Libor-Ois basis forspot starting deposits,
which are increasing in time, meaning that a higher probability of default for the
representative bank is attached to longer maturities.

If the deposit is forward starting (as the one underlying FRAs), then the lender
should account for the fact that on that future date the representative bank is
no more the same as today, since some of the banks composing the panel may be
replaced by new ones. The replacement can be due to the creditworsening or by
the default of one or more banks; the new banks entering in thepanel to replace
the excluded ones will have very likely a better credit standing that would improve
the average credit quality of the panel and hence of the representative bank, to
which the forward (FRA) Libor rates refers to. For this reason, the forward Libor
�xings implied in the FRAs' and swaps' market price are not in creasing, as the
spot spread curve would suggest, but decreasing, to take into account the general
expected improvement of the credit quality of the panel overtime, originated be the
possible changes of the panel of banks.

To summarise, the Libor-Ois forward basis is actually a weighted average of
forward spreads of the single members of the panel. If we assume that the market
expects a likely future change of the composition of the panel ( i.e.: some panel banks
could be replaced by new banks) and / or a change in the credit worthiness of the
current members, then we would not get monotonically increasing curves anymore.
We will try to give a more visual representation of this concept

For simplicity, let us begin by assuming that market expectsonly improvements,
that is: changes in panel composition and / or panel members'credit standing that
would result in a lower average credit spread. Given the current spot Libor-Ois
basis curve, we would now have to include the future possibility of a transition to a
substantially lower basis curve when computing expected future basis.

The resulting basis curve could then be seen as a gradual transition from a high
Libor-Ois basis curve, denoted asH and corresponding to the current panel, to a
low Libor-Ois basis curve, denoted asL . Assume the market will begin to monitor
the new lower credit spread curve from a certain future time onwards; therefore we
can imagine theL basis curve as starting with a certain time delay, as can be seen
in Figure 3. At each time in the future, there will be a certain probability of a shift
from the Libor-Ois basis curveH to the curve L : at time 0 the expected Libor-Ois
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Figure 3: A simpli�ed explanatory graph depicting the gradual transition from a High
forward Libor-Ois basis curve, to a Low forward Libor-Ois basis curve (starting delayed),
due to a change of the representative bank.

basis curve will resemble the one depicted in the �gure.
The set of models we will present in this article, all share this basic idea; they

di�er only in the speci�c risk-neutral dynamics of the expected future panel changes.
To make the models analytically tractable and usable in practice, we make the
simplifying assumption that only two types of banks exist in the market: H and L,
with the former having a higher credit risk than the latter. T hese two types of banks
have the same type of dynamics for their respective default intensities, although a
di�erent set of parameters refers to the H and the L class.

To specify the risk-neutral dynamics commanding the expected gradual transi-
tion from the H to the future L basis curve, let us start assuming that the initial
Libor panel is given in its composition of H and L banks. We consider three dif-
ferent assumptions for the transition dynamics, each one producing a di�erent �nal
Libor-Ois basis modelling:

1. The initial Libor panel is made of a single representativebank that may
be totally replaced by a new, di�erent, representative bank, according to a
continuous-time Markov process with two states (H and L) and a well de�ned
instantaneous transition matrix.

2. The initial Libor panel is made of a given number of banks that di�er in type
(H or L): the replacements occur at random discrete future times, driven by
continuous-time Markov process. At every random replacement time, each of
the banks in the panel can be replaced by another bank of any type, according
to a transition matrix.

3. The Libor panel is a continuous weighted average of banks that di�er in type
(H or L) and timing of entry in the panel: a deterministic continuou s-time re-
placement process drives the gradual replacement dynamicstowards a di�erent
panel composition.

All of these models assume that the replacement dynamics areindependent from
the single-counterparty default intensity dynamics and the Ois instantaneous rate
dynamics.
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Figure 4: Modularity of the modelling approach

We will structure the paper as follows:

1. Specify the assumptions for Ois instantaneous rate dynamics and derive the
caplet and 
oorlet prices.

2. Specify the assumptions for single-counterparty default intensity dynamics and
derive the results for classical credit spreads

3. Specify separately for the three model variants, the transition dynamics as-
sumptions and derive the respective results for expected credits spreads, spread
probability density functions, Libor caplet prices and implied volatility smiles.

Remark 2.1 (Modular Approach) . We wish to highlight that one of the features of
our approach to basis modelling is modularity (see Figure 4). Actually, we separately
specify:

1. the dynamics for the (Ois) risk-free rate;

2. the default intensity dynamics, having two di�erent sets of parameters for H
and L, but also sharing an identical type of dynamics for the two types of
banks;

3. the panel reshu�ing/transition dynamics, according to t he chosen assumption
amongst the three proposed above;

Moreover, we assume a mutual independence between all of these separate dynamics.
All this means that the user is then free to choose her own preferred dynamics

for the Ois and the default intensities, even if we will adopta CIR dynamics for all
of them in what follows. Our choice should be regarded as taken just for explanatory
purposes.
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3 Libor-Ois basis modelling
Assume that, for a given reference currency, a group of (major) banks enter the
Libor panel at time t. To simplify the analysis, we assume they are all equal to a
representative bank that can go bankrupt with known default probabilities for any
future date. The default probabilities can be considered asan average of the default
probabilities of the single banks of the panel: one may thinkthat if she lends money
at time t to one of these banks, she will bear an expected default risk equal to that
referring to the representative bank.2

Consider for the moment that the representative bank is exactly similar to a
speci�c institution with its own default risk; alternative ly said, lending spot, or
forward at a future date, an amount of money to the representative bank is no
di�erent than lending to a speci�c bank operating in the mark et that wishes to
borrow (we will relax this assumption soon). The (risk-neutral) survival probability 3

of the representative bank of the Libor panel, at time t up to time T, is:

SP(t; T ) = EQ
�
e�

RT
t � s ds

�
�
�
�F t

�
(1)

where � F is the time the default occurs, � t is the (possibly stochastic) default
intensity, which we assume independent from interest rates. We have also that
PD (t; T ) = 1 � SP(t; T ).

Assume for the moment we want to price a deposit starting ints and expiring in
ts + � : the money is lent to a defaultable counterparty with a well de�ned survival
probability SP(ts; ts + � ). In case of default, we su�er a percentage loss of the
notional of the deposit market value equal to the Loss Given Default Lgd . To
further simplify the notation, assume a unit notional.

The simply compounded risk-free (Ois) rate for the period [ts; ts + � ] is denoted
by R(ts; ts + � ) and the simply compounded credit (basis) spread is denotedby
S(ts; ts + � ). If ts > 0 these are the simply compounded forward rates. The total
Libor rate applied to the deposit is L (ts; ts + � ) = R(ts; ts + � ) + S(ts; ts + � )

The credit spread represents a fair default risk premium over the risk free rate.
As such, it is calculated in order to equate the discounted expected value of the
risky deposit, under the risk neutral measureQ, (considering both cases of default
during the contract lifetime and survival until maturity) t o:

� the unit notional, if ts = 0 ( i.e.: if the deposit starts today);

� the unit notional times the expected survival probability o f the counterparty
until ts, EQ [1� F >t s + � jF t ] if ts > 0 (i.e.: the deposit starts on a future date,
and we weight the notional by the probability that the deposit actually starts,
or that the counterparty survives at the start time).

Let us start by considering a spot starting deposit.

2Clearly, once the deal is struck and the counterparty is known, the exact credit risk borne by the
lender can be di�erent from the (average) credit risk of the representative bank.

3It is likely super
uous stressing that we adopt a reduced form approach to default modelling.
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3.1 Spot Credit Spread
The equation to determine the spot credit spreads, assumingRecovery of Face Value
(RFV), is: 4

1 = EQ
�
D D (0; � ) �

�
1 +

�
S(0; � ) + R(0; � )

�
� �

�
�

=

= PD (0; � ) �
�
1 +

�
S(0; � ) + R(0; � )

�
� �

�
� SP(0; � ) + (1 � Lgd ) � PD (0; � ) =

=
1 + ( S(0; � ) + R(0; � )) � �

1 + R(0; � ) � �
� SP(0; � ) +

(1 � Lgd ) � PD (0; � )
1 + R(0; � ) � �

(2)

We have indicated with D D (t; T ) the default risk-free discount factor from T to t,
and with PD (t; T ) = EQ [D D (t; T )] = 1

1+ R(t;T )( T � t ) the price in t of default risk-free
zero-coupon bond expiring inT.

By some simple algebra, we get from (2):

S(0; � ) =
1
�

�

�
Lgd + R(0; � ) � �

�
� PD (0; � )

1 � PD (0; � )
(3)

If we de�ne the adjusted default probability as PD (0; � ) = PD (0; � )=(1� PD (0; � )),
then we can rewrite the spread as:

S(0; � ) =
1
�

�
�
Lgd + R(0; � ) � �

�
� PD (0; � ) (4)

3.2 Forward Credit Spread
In case of a forward start deposit, the forward credit spread, assuming again a
Recovery of Face Value, is derived from the following equivalence:

EQ [1� F >t s
] = EQ

�
D D (t; t s + � ) �

�
1 +

�
S(ts; ts + � ) + R(ts; ts + � )

�
� �

�
�

(5)

Working out the expectations:

SP(0; ts) =

= PD (ts; ts + � ) �
�
1 + ( S(ts; ts + � ) + R(ts; ts + � )) �

�
� SP(0; ts + � )+

+ (1 � Lgd ) � (SP(0; ts) � SP(0; ts + � )) =

=
1 + ( S(ts; ts + � ) + R(ts; ts + � )) � �

1 + R(ts; ts + � ) � �
� SP(0; ts + � )+

+
(1 � Lgd ) � (SP(0; ts) � SP(0; ts + � ))

1 + R(ts; ts + � ) � �
(6)

In order to solve this equation, de�ne the adjusted forward default probability as:

PD (ts; ts + � ) =
EQ [� F > t s]

EQ [� F > t s + � ]
� 1 =

SP(0; ts)
SP(0; ts + � )

� 1 (7)

4This analysis is taken form Castagna and Fede [2].
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The forward credit spread S(ts; ts + � ) is retrieved with some algebra:

SP(0; ts)
SP(0; ts + � )

(1 + R(ts; ts + � ) � � ) =

= 1 + ( S(ts; ts + � ) + R(ts; ts + � )) � � + (1 � Lgd ) � PD (ts; ts + � )
(8)

By expressing the LHS in terms of conditional forward default probabilities:

PD (ts; ts + � ) � R(ts; ts + � ) � � + Lgd � PD (ts; ts + � ) =
S(ts; ts + � ) � �

1 + R(ts; ts + � ) � �

Finally, we get:

S(ts; ts + � ) =
1
�

�
�
Lgd + R(ts; ts + � ) � �

�
� PD (ts; ts + � ) (9)

For typical values of interest rates, and relevant Libor tenors (i.e.: 1,3,6 and 12
months), we can safely assume thatLgd � Lgd + R(ts; ts + � )� . The spot and
forward spreads can then be respectively written as:

S(0; � ) �
Lgd

�
PD (0; � ) (10)

and

S(ts; ts + � ) �
Lgd

�
PD (ts; ts + � ) (11)

Alternatively, if R(ts; ts + � )� is not negligible, we can simply replace the original
Lgd with Lgd � = Lgd + R(ts; ts + � )� and considerR(ts; ts + � ) a constant.

3.3 From Credit Spreads to Ois-Libor Basis
We now relax the assumption that the representative bank is exactly the same as a
given bank, and we explicitly consider that it may change over time, mirroring the
possible Libor panel's changes.

We will introduce three di�erent ways to model the modi�cati on of the Libor
panel, that will produce three di�erent models. We will dwel l more on the �rst
model, giving an intuitive representation of the panel transition process; the other
two approaches are a variation that can be easily understoodonce one grasps the
mechanics of the �rst one.

3.3.1 Model 1: Stochastic Total Replacement of the Single Re pre-
sentative Bank

Assume we start with a given panel of banks characterised by acredit risk sum-
marised in the spot Libor-Ois spread curve and referring to the representative bank
at time t = 0. The credit spread curves are determined by the default probabili-
ties commanded by an intensity process� H , as in equation (1). At a future time
� > 0 a change in the panel may occur: a new representative bank enters in the
panel, replacing the bank currently entering it. This new bank has a credit quality
determined by the default probabilities originated by another intensity process� L ,
which starts exactly when the replacement occurs.

The representative bank may change over time due to its credit standing change
(typically a worsening) or default. Any transition implies a reset of the process,
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Figure 5: Visual rendering of the replacement process of the Libor panel of banks.

meaning that the new process, referring to the new representative bank replacing
the old one, will start exactly when the random transition event occurs.

Moving from a one-time to a continuous-time replacement process, we can gen-
eralise the idea outlined above in a rather straightforwardfashion. Assume that we
are at time t = 0, and that we are interested in determining the Libor forward
spread for a deposit starting in ts and expiring in ts + � , as indicated in Figure 5.
At time ts the panel will be the one at time 0 with probability wH 0(ts); during the
period [0; ts] a continuous replacement process takes place: at each time� i , for i > 0,
a new panel can replace the original one, and the probabilitythat this is the panel
existing at the start of the deposit in ts is indicated by wHL (ts; � i ). To each new
panel, corresponding to a given representative bank, is associated a speci�c default
risk, commanded by a default intensity process starting in� i .

Hence, at time ts, loosely speaking, the representative bank's default probability
will be a weighted average of all the default probabilities of the representative banks
that can form the panel by the time � i on.

It is important to highlight the fact that the deposit counte rparty, i.e.: the
borrower bank, is a speci�c member of the interbank population that is implicitly
assumed to be an in�nity of banks that can replace the defaulted, or credit deterio-
rated, banks included in the current and future panels. Whenever there is a credit
standing transition or a default, the current representative agent changes and the
whole population changes accordingly. This transition in overall population charac-
teristics is equivalent to a replacement of the representative agent with a new kind
of representative agent.

It is assumed that all banks have mutually independent default intensity dy-
namics. Therefore, given this assumption of independence and in�nite population,
we imply that there will always be a bank (embodied in the representative bank)
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to which the Libor rate can be applied when it asks to borrow money. In other
words, although the Libor panel is made of defaultable entities, the replacement
process (jointly with the above mentioned assumptions) ensures that the process
of the Libor-Ois basis never stops, and that there is always to opportunity to lend
money to a Libor bank.

When we monitor the credit risk in a forward starting deposit with a speci�c
representative bank, we always consider the possibility that it might go bankrupt
before the contract inception in ts and this will be accounted for in the speci�c rep-
resentative bank's credit spread by using the relevant forward default probabilities.
In case a speci�c representative bank defaults (i.e.: the panel stops existing and a
replacement occurs), we will move our monitoring to anotherrepresentative bank
which is independent from the previously monitored one. Given our assumptions we
can rest assured that we will always �nd a new representativebank to monitor.

We will provide in next section the formulae for Forward Libor-Ois basis curves
referring to general version of this model: it allows for a change in the Libor panel af-
ter a total replacement of the existing representative bankwith a new representative
bank that can be either of type L or H .

Forward Libor-Ois basis curves

Whenever a series of replacement events occurs betweent = 0 and t = ts, only
the last of these events is relevant, since on every replacement the previous default
intensity process stops and is replaced by the default intensity process of the new
representative bank replacing the old one. Once the last replacement occurs, we can
use the credit spread equations de�ned in the beginning of this section, relating the
basis to the forward default probability under the last extr acted � process.

Assume the last replacement time is� , so that the new default intensity process
� starts exactly in � . Consider two cases: in the �rst the last new bank will be of type
H , in the other it will be of type L . Given the assumption that the functional form of
the intensity process� between switching events does not change, we have that the
forward default probability will be simply shifted in time b y � : PD z(ts � �; t s � � + � )
(with z 2 f H; L g), where

PD z(ts � �; t s � � + � ) =
SPz(0; ts � � )

SPz(0; ts � � + � )
� 1 (12)

We also trivially have SPz(ts � �; t s � � + � ) = 1 � PD z(ts � �; t s � � + � ).
Additionally, denote the conditional credit spread, under the replacement con-

ditions, as SH (ts � �; t s � � + � ) and SL (ts � �; t s � � + � ) respectively. Making use
of the approximation introduced above, the credit spread is:

Sz(ts � �; t s � � + � ) =
Lgd

�
� PD z(ts � �; t s � � + � ) (13)

where PD z(ts � �; t s � � + � ) = SPz(0; ts � � )=SPz(0; ts � � + � ) � 1.
So far we showed the calculations for a credit spread conditioned on a speci�c

last replacement event� 2 (0; ts). We need to integrate for all the possible� 's in
the interval (0 ; ts), bearing in mind that two last replacement time � 's are obviously
mutually exclusive. Therefore, to compute the unconditional Libor-Ois basis, we
have to consider these three general possibilities:

1. the representative bank is never replaced, therefore we will calculate the basis
as the one of the initial bank;

12



2. the representative bank is replaced at least once and in the last replacement
the new bank is of typeH ;

3. the representative bank is replaced at least once and in the last replaced the
new bank is of typeL .

The �rst case has probability: wH; 0(0; ts), and the spread is:

S1(ts; ts + � ) = wH; 0(ts) � SH (ts; ts + � ) (14)

The weight wH; 0(0; ts), as well as the other weights in the following formulae, are
derived in Appendix A.

In the second case, the spread is calculated by integrating over all admissible� 's
the conditional spread SH (ts � �; t s � � + � ) multiplied by the probability density
function wHH (ts; � ).

S2(ts; ts + � ) =
Z ts

0
wHH (ts; � ) � SH (ts � �; t s � � + � )d� (15)

In the third case the spread is calculated similarly to the second case:

S3(ts; ts + � ) =
Z ts

0
wHL (ts; � ) � SL (ts � �; t s � � + � )d� (16)

Recall that the probabilities wz1 ;z2 (t; T ) refer to the last replacement from z1 to z2

occurring betweent and T: they implicitly contain also all the possible replacements
from the two types of representative bank occurring before the last one.

The unconditional forward Libor-Ois basis is simply the sumof the three terms
above, since they are mutually exclusive and they are already weighted for their
respective probabilities:

SLibor (ts; ts + � ) = S1(ts; ts + � ) + S2(ts; ts + � ) + S3(ts; ts + � ) (17)

Marginal forward Libor-Ois basis p.d.f.

To derive the forward Libor-Ois basis marginal p.d.f., we need to condition it on:

� a certain state z 2 f H; L g

� last replacement event in� 2 (0; ts)

� survival until ts � �

We need to derive the complete density, accounting for all possible � 2 (0; ts). To
this end, consider the three cases:

1. No replacement of the representative agent occurs in (0; ts)

2. One or more replacements occur in (0; ts), with a last replacement event in
� 2 (0; ts) collapsing in state H

3. One or more replacements occur in (0; ts), with a last replacement event in
� 2 (0; ts) collapsing in state L

The respective probabilities are:

1. wH; 0(ts)

2. wHH (ts; � )

13



3. wHL (ts; � )

The p.d.f. is:

gQ( ~SLibor ; ts; � ) = gQ
1 ( ~S; ts; � ) + gQ

2 ( ~S;0; ts; � ) + gQ
3 ( ~S; ts; � ) (18)

where the functionsgQ
1 (:), gQ

2 (:) and gQ
3 (:) are given in Appendix A.

3.3.2 Model 2: Stochastic Partial Replacement with Detailed Libor
Panel

In the Model 2 we extend the idea of Model 1 by allowing for a detailed description
of the initial Libor panel. In more detail, assume that the panel is composed byN
banks.5 They can be both of type H and L, typically with a mix at the observation
date containing more of the former if Libor-Ois curves are humped.

Each bank in the panel can be replaced by new banks of both types in the
future; the credit spread of these banks is commanded by an intensity process that
starts at the time the replacing banks enter in the panel. Thereplacement process
is modelled in the same way as Model 1, by a continuous time Markov chain.

The main di�erence between Model 1 and Model 2 is that in the latter we
consider the actual number of banks entering in the Libor panel, although they
can only be of two types. The modi�cations of the panel can occur for any of
the N banks at random future times, contrarily to Model 1, in which the (one)
representative bank can be replaced at future times by another representative bank,
thus completely renewing the composition of the panel.

Forward Libor-Ois basis curves

If we denote the i member's initial state as zi (0) 2 f H; L g, we have two kinds of
random variables depending onzi (0). Each random variable ~Si will follow dynamics
according to Model 1, with initial state zi (0). We divide the panel members in two
subsetsZH = f i

�
� zi (0) = H g and ZL = f i

�
� zi (0) = Lg. Then the Libor-Ois basis

random variable may be expressed as:

~SLibor (ts; ts + � ) =
1
N

� X

i 2 ZL

~Si (ts; ts + � ) +
X

j 2 ZH

~Sj (ts; ts + � )
�

(19)

Denote with SM 1 ;H (ts; ts + � ) and SM 1 ;L (ts; ts + � ) the value of a forward Libor-
Ois basis calculated according to Model 1 with initial state H and L respectively.
Suppose that there arem members in ZH and N � m members in ZL . Thus the
expectation of ~SLibor will be the weighed average of the forward Libor-Ois basis
above de�ned:

SLibor (ts; ts + � ) =
N � m

N
� SM 1 ;L (ts; ts + � ) +

m
N

� SM 1 ;H (ts; ts + � ) (20)

5At the time of writing, the USD Libor panel is made of 18 banks; the EUR Euribor panel is made of
of 25 banks.
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Marginal forward Libor-Ois basis p.d.f.

To �nd out the density of ~SLibor (ts; ts + � ), we need to calculate the p.d.f. of the
following random variable:

~SLibor (ts; ts + � ) =
1
N

� X

i 2 ZL

~Si (ts; ts + � ) +
X

j 2 ZH

~Sj (ts; ts + � )
�

(21)

Suppose that the spread of the banki is independent from the spread of the
bank j for every i 6= j . The density we are looking at is simply the convolution of
the densities ~Si 2 ZL (ts; ts + � ) and ~Sj 2 ZH (ts; ts + � )( ts; ts + � ).

Denote with gQ
M 1 ;L ( ~S; ts; ts + � ) and gQ

M 1 ;H ( ~S; ts; ts + � ) the Libor-Ois basis
marginal density according to Model 1, with initial states H and L respectively.
These are the respective p.d.f. for~Si 2 ZL (ts; ts + � ) and ~Sj 2 ZH (ts; ts + � ).

If there are m members inZH and N � m members inZL , the marginal density
of the Libor-Ois basis is given by the convolution of two components: i) the p.d.f. of
the weighted sum of them members in groupZH and ii) the p.d.f. of the weighted
sum of N � m members in groupZL . Each member is equally weighted by 1

N .

gQ
Libor (y; ts; ts + � ) =

��
N � gQ

M 1 ;H (N � ~S; ts; ts + � )
�

� � � � �
�

N � gQ
M 1 ;H (N � ~S; ts; ts + � )

��

| {z }
m

�

�
��

N � gQ
M 1 ;L (N � ~S; ts; ts + � )

�
� � � � �

�
N � gQ

M 1 ;L (N � ~S; ts; ts + � )
��

| {z }
N � m

(22)

where � denotes the convolution operator.

3.3.3 Model 3: Continuous Time Deterministic Replacement Pr o-
cess of the Single Representative Bank

The Model 3 for the Libor-Ois basis hinges on the assumption that new replacing
representative banks gradually replace the representative banks entering the initial
Libor panel. So we have two main di�erences between Model 1 and Model 3: i) the
initial panel can be a combination of H and L type banks in Model 3, whereas it
was a panel made by a single type representative bank in Model1; ii) in Model 3
the replacement is not total, as in Model 1, but only a fraction of old representative
banks can be replaced by newH and L type banks; �nally iii) the replacement
process occurs continuously and in a deterministic fashionin Model 3, contrarily
to the Markov chain process in Model 1. The technical detailsof the transition
mechanics are in the Appendix B.

Forward Libor-Ois basis curves

The forward Libor-Ois basis SLibor (ts; ts + � ) in this model is the sum of two com-
ponents:

1. the contribution of the initial panel, dampened by the e�ect of the replacement
of new banks, denoted byS1(ts; ts + � );
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2. the integral of the contributions of all the new banks that enter the panel in
(0; ts), denoted with S2(ts; ts + � ).

Denote with S(ts; ts + � ) =
�
SH (ts; ts + � ) SL (ts; ts + � )

�
the vector containing

the H and L single static counterparty forward credit spreads. The �rst component
is given by:

S1(ts; ts + � ) =
�

B (0; ts) � w0

� 0

� S(ts; ts + � ) (23)

whereB (0; ts) is the decay matrix, de�ned in (85), and w0 is the initial Libor panel
composition vector.

The second component is given by:

S2(ts; ts + � ) =
Z ts

0

�
' (u; ts)

� 0� S(ts � u; ts � u + � ) � du (24)

where ' (u; ts) is the new bank weight density vector (with H and L components)
de�ned in equation (83).

Finally, the complete forward Libor-Ois basis is given by:

SLibor (ts; ts + � ) = S1(ts; ts + � ) + S2(ts; ts + � ) (25)

The formulae for the single components are in the Appendix B.

Marginal forward Libor-Ois basis p.d.f.

Let ~SH (ts; ts + � ) � �p Q
H ( ~SH ; ts; ts + � ) and ~SL (ts; ts + � ) � �p Q

L ( ~SL ; ts; ts + � ), where
�p Q

z is the risk neutral marginal p.d.f of a credit spread for a z-type bank, for a
deposit starting in ts and maturing in ts + � . Then:

~S1(ts; ts + � ) � gQ
1 ( ~S1; ts; ts + � )

gQ
1 ( ~S1; ts; ts + � ) =

�
1

jbH (0; ts)wH (0)j
� �p Q

H

� ~S1(ts; ts + � )
bH (0; ts)wH (0)

; ts; ts + �
��

�

�
�

1
jbL (0; ts)wL (0)j

� �p Q
L

� ~S1(ts; ts + � )
bL (0; ts)wL (0)

; ts; ts + �
��

(26)

where � denotes the convolution operator.
Then the complete spread has the following p.d.f.:

~SLibor (ts; ts + � ) � gQ
1 ( ~SLibor � S2(ts; ts + � ); ts; ts + � ) (27)

As explained in Appendix B, S2(ts; ts + � ) has in�nitesimal variance and therefore
is a deterministic process. The detailed formula is given inAppendix B as well.

4 Libor Caplet&Floorlet Valuation with Stochas-
tic Basis
The framework outlined above allows to retrieve the marginal densities for the
Libor-Ois basis in each of the three models analysed. It is then possible, under the

16



assumption of the Libor-Ois basis independent from the corresponding Ois rate, the
sum of both being the Libor rate.6

Let us start by considering a deterministic and constant additive spread �S: then
a Libor caplet would be equivalent to a caplet on an Ois rate with adjusted strike
~K = K � �S. Let R(ts; ts + � ) be the forward Ois rate betweents and ts + � , observed
at time t. A caplet on Libor rate L(ts; ts + � ) = R(ts; ts + � ) + �S has a pay-o� at
the natural expiry in ts equal to:

Caplet Libor
�
L (ts; ts + � );K; t s; ts + �

�
=

= max
�
R(ts; ts + � ) + �S � K; 0

�

= max
�
R(ts; ts + � ) � (K � S(ts; ts + � )) ; 0

�
=

= Caplet Ois
�
R(ts; ts + � ); K � �S; ts; ts + �

�

At time t, the caplet is worth Caplet Ois
�
R(ts; ts + � ); K � �S; ts; ts + �

�
and can

be computed by any available model commonly adopted in practice, e.g.: a Black
formula.

If we consider a stochastic credit spread and assume its independence from Ois
rates, we can simply evaluate the Libor caplet as the Ois caplet above conditioned
on all admissible values of�S. We may then express the value of a Libor caplet as the
convolution between the Ois caplet (as a function of the strike K ) and the marginal
basis densitygQ(S; ts; ts + � ), whose explicit formula is given for each of the three
models:

Caplet Libor
�
L (ts; ts + � ); K; t s; ts + �

�
=

= Caplet Ois
�
R(ts; ts + � ); K; t s; ts + �

�
� gQ(K; t s; ts + � ) =

=
Z + 1

�1
Caplet Ois

�
R(ts; ts + � ); K � S; ts; ts + �

�
� gQ(S; ts; ts + � ) � dS

(28)

where � indicates the convolution operator, setting as the convolution domain K 2
R.

5 A Speci�cation of the Model with CIR In-
tensity Dynamics
As we have mentioned above, the framework we have sketched ismodular, in the
sense that, under the stated assumptions, we can choose any dynamics for the
intensity processes forH - and L-type banks, and thus specify the Models 1, 2 or 3
we have analysed above for the Libor-Ois basis.

Besides, we can choose any dynamics for the (risk-free) Ois rate and then come
up with a full speci�cation for the Libor rate dynamics that w ill allow for the
valuation of Libor derivatives, including caps&
oors and swaptions.7

6Similar general formulae are given also in Mercurio [4].

7We have not studied the evaluation of swaptions in this work, but it is possible in the outlined
framework.
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In what follows we will specify the default intensity dynamics as CIR processes8

and we will show the basis curve it is possible to obtain by thethree models of
Libor-Ois basis.

5.1 Forward Credit Spreads
Assume a bank of typez can go defaulted according to a jump process commanded
by an intensity whose dynamics - under the risk neutral measure Q - follows a CIR
process of the type:

d� z(t) = � z (� z � � z(t)) � dt + � z
p

� z(t) � dW Q
z;t (29)

where z 2 f H; L g is a label variable indicating whether the counterparty is of the
H or L type (high or low credit risk respectively). The initial con dition is � z(0).

Since the CIR process belongs to the a�ne exponential family, forward credit
spreads may be explicitly derived. Given the survival probability:

SPz(0; t) = E
�

exp
�

�
Z t

0
� z(u)du

��
= Az(0; t) exp

�
� Bz(0; t)� z(0)

�
(30)


 z =
p

� 2
z + 2 � 2

z (31)

� z =
4� z� z

� 2
z

(32)

Az(T; S) =
�

2
 z exp [(� z + 
 z)(S � T)=2]
2
 z + ( � z + 
 z) (exp [(S � T)
 z] � 1)

� � z =2

(33)

Bz(T; S) =
2 (exp [
 z(S � T)] � 1)

2
 z + ( � z + 
 z) (exp [
 z(S � T)] � 1)
(34)

(35)

the forward credit spreads is:

Sz(ts; ts + � ) =
Lgd

�
� PD (ts; ts + � )

=
Lgd

�
�
�

Az(0; ts) exp
�

� Bz(0; ts)� z(0)
�

Az(0; ts + � ) exp
�

� Bz(0; ts + � )� z(0)
� � 1

� (36)

Practical Examples

Having speci�ed the dynamics of the intensity � (t) as a CIR process, we are now able
show the time structures for the Libor-Ois basis generated within our framework.
The aim of all the models is to accurately reproduce the humped shape of the real
data (see Figure 1): it means that our model is designed to be 
exible enough to
reproduce the hump in a realistic time interval, to match the slope of the time
structure and to replicate the spot (deposits') Libor-Ois basis.

Assume we set the parameters of the CIR intensity process forthe H and L
type banks, in each of the 3 models, as shown in the table 2. We can then check

8See Cox, Ingersoll and Ross [3].
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Maturity 1M 3M 6M 1Y

0 0.81% 0.83% 0.86% 0.90%
1 0.96% 0.96% 0.97% 0.98%
3 1.00% 1.00% 1.00% 1.00%
5 1.00% 1.00% 1.00% 1.00%
7 1.00% 1.00% 1.00% 1.00%
10 1.00% 1.00% 1.00% 1.00%
15 1.00% 1.00% 1.00% 1.00%
20 1.00% 1.00% 1.00% 1.00%
25 1.00% 1.00% 1.00% 1.00%
30 1.00% 1.00% 1.00% 1.00%

Table 1: Ois rates. The underlying short rate follows a CIR process withr0 = 0:80%,
� Ois = 1:5, � Ois = 1:00% and� Ois = 5:00%

CIR Parameters Replacement Parameters

� 0 � � � � H � L aHH aHL aLH aLL

Model 1
H 0.06% 1.0 1.8% 1.0%

0.2 4 60% 40% 0% 100%
L 0.05% 0.5 0.5% 1.0%

Model 2
H 0.10% 1.0 2.5% 1.0%

0.2 4 50% 50% 0% 100%
L 0.05% 0.3 0.4% 1.0%

Model 3
H 0.06% 1.0 1.8% 1.0%

0.2 4 60% 40% 0% 100%
L 0.05% 0.5 0.5% 1.0%

Table 2: Parameters for models with constant replacement

which type of shapes for the Libor-Ois basis term structure the 3 models generate.
Moreover, we test also the 
exibility of the model by introdu cing time dependent
parameters in the transition processes and in the exit intensity from the panel.

The starting Ois rates' term structure is also needed: we generate a curve by a
CIR model for the short rate whose parameters are chosen suchthat they �t best
the market quotes dealing on November 1st , 2014. In table 1 we show the term
structures of the forward Ois for the 1M, 3M, 6M and 1Y tenor.

The results are shown in �gures 6a, 6c and 6e, where we used �xed parameters
for the exit intensity from the panel and for the transition d ynamics speci�c to each
model. Note that in the Model 2 (Stochastic Partial Replacement with Detailed
Libor Panel) we considered a panel of 25 banks, such that 15 started as H type.
Moreover, in the Model 3 (Continuous Time Deterministic Replacement Process of
the Single Representative Bank) we chose a starting panel entirely composed ofH
type banks, that is wH (0) = 1 and wL (0) = 0.

In �gure 6b, 6d and 6f we show the Libor-Ois basis term structure when allowing
for time dependent parameters of the panel exit intensity and transition dynamics.
The most accurate model seems to be the second one, that is themodel with stochas-
tic partial replacement with detailed Libor Panel. As a matt er of fact, such a time
structure does not su�er the initial spike and moreover the hump correctly cover
the interval between spot date and 10-ish years, switching from a concave to convex
slope.
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(a) Model 1 - constant parameters (b) Model 1 - Time Variant Parameters

(c) Model 2 - Constant Parameters (d) Model 2 - Time Variant Parameters

(e) Model 3 - Constant Parameters (f) Model 3 - Time Variant Parameters

Figure 6: An example of forward basis curve with constant and time variant parameters.

5.2 Credit Spread Marginal p.d.f.
Given a CIR speci�cation for the dynamics of � z(t), we wish to calculate the
marginal p.d.f. of the credit spread ~Sz(ts; ts + � ), which is indicated as �pQ

z ( ~Sz; ts; ts +
� ).

Since ~Sz(ts; ts + � ) = Lgd
� �

�
fSP z (0;t s )

fSP z (0;t s + � )
� 1

�
, if we de�ne the random variable

x =
fSP z (0;t s + � )

fSP z (0;t s )
, we may equivalently say that the relationship between~Sz(ts; ts + � )

and x is:
~Sz(ts; ts + � ) =

Lgd
�

�
�

1
x

� 1
�

(37)

Note that the previous relation is a deterministic, inverti ble and di�erentiable func-
tion. So, if we calculate the risk-neutral marginal p.d.f. of x �rst, which we will
denote as f Q

z (x; t s; ts + � ), we are able to deduce from it �pQ
z ( ~Sz; ts; ts + � ). The

details are explained the Appendix A. The CIR process belongs to the A�ne Ex-
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ponential Family, therefore the random variable:

fSPz(ts; ts + � ) = EQ
�

exp
�

�
Z ts + �

ts

� z(u)du
� �

�
�
�F ts

�
=

= A(ts; ts + � ) exp
�

� B (ts; ts + � )� z(ts)
�

may be expressed in terms of the� z(ts) random variable.
Since we wish to derive the p.d.f. ofx, which is a ratio of survival probabilities,

let us de�ne Gts the probability measure associated with the numeraire fSP(0; ts).
The associated Radon-Nikodym derivative is:

dQ
dGts

(t) =
1

fSP(t; t s)
dQ

dGts
(ts) = 1

(38)

Using conditional expectations:

f Q
z (x) � dx = EQ

�
1SP z (ts ;t s + � )2 (x;x +d x)

�
�F ts

�

= EGt s

�
1SP z (ts ;t s + � )2 (x;x +d x) �

dQ
dGts

�
�F ts

� (39)

therefore to obtain our result we may equivalently switch from Q to the Gts measure.
Let v � t � ts and de�ne these auxiliary functions:

 z =
� z + 
 z

� 2
z

qz(t; v) = 2 � [� z(t � v) +  z + Bz(t; t s)]

� z(t; v; � z(v)) =
4 � (� z(t � v))2 � � z(s) � e
 z (t � v)

q(t; s)

Under the forward measureGts , the distribution of � z(t) conditional on � z(v) is
given by:

pGt s

� z (t )j� z (v) (x) = qz(t; v) � p� 2 (�;� z (t;v;� z (s)) (qz(t; v) � x) (40)

where p� 2 (�;� ) (x) denotes the marginal p.d.f. of a Non-Central Chi-Squared random
variable with � degrees of freedom and non-centrality parameter� .

Given the Gts p.d.f. of � z(ts), by inverting this relation we are able to derive the
p.d.f. of Az(ts; ts + � ) exp

�
� Bz(ts; ts + � )� z(ts)

�
under Gts . Set x = fSPz(ts; ts + � ).

� z(ts) =
1

Bz(ts; ts + � )
� log

�
Az(ts; ts + � )

x

�
(41)

This is an invertible and di�erentiable function of x. Its �rst derivative is:

d� z(ts)
dx

= �
1

Bz(ts; ts + � ) � x
(42)

Using the classical probability result for the p.d.f. of an invertible and di�eren-
tiable function of a random variable:

f Q
z (x; t s; ts + � ) =

�
�
�
�
d� z(ts)

dx

�
�
�
� � qz(ts; v) � p� 2 (�;� z (ts ;v))

�
qz(ts; v) � � z(ts)

�
(43)
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We �nally get:

f Q
z (x; t s; ts + � ) =

=
1

Bz(ts; ts + � ) � x
�qz(ts; v)�p� 2 (�;� z (ts ;v))

�
qz(ts; v)�

1
Bz(ts; ts + � )

�log
�

Az(ts; ts + � )
x

� �

(44)

Once we havef Q
z (�), we are able to calculate the p.d.f. of the credit spread �pQz

according to (37)

�p Q
z ( ~S; ts; ts + � ) =

�
Lgd

�
f Q

z
�
�( ~S); ts; ts + �

�

�
�

Lgd
~S + 1

� 2 (45)

This formula is explained in details in the appendix (see (72)). We are now able
to make it speci�c to any of the 3 models:

1. for the �rst model the p.d.f. is given by the formula (76) in the appendix;

2. once we have the p.d.f. for the �rst model, we easily deducethe p.d.f. for the
second model applying (22);

3. the p.d.f. for the third model is explicitly shown in (103) and (104).

Practical Examples

Given the densities for each model, the Libor Caplet will be aconsequence of equa-
tion (28). We use the same data for the Ois rates and the Libor-Ois basis as above.
For the Ois forward rates we also assume that they are lognormally distributed
with one constant volatility set at 30%. Please note that we should have used a
CIR model for the Ois rates also to evaluate caplets, to be consistent with the way
we generated the Ois forward curves. Nonetheless, the purpose of this section is to
isolate the impact on the volatility smile of the Libor-Ois b asis models we have de-
scribed above. For the same reason, we compare also the volatility smiles produced
by the Libor-Ois models with the smile generated by a simply displaced Lognormal
model, with displacement set equal to the relevant forward Libor-Ois basis, assumed
to be constant.

We are then able to calculate the implied volatility for each of the models as
shown in 7 and 8 for the 6M tenor. Implied volatility smiles and implied volatility
surface for other tenors (1M, 3M, 1Y) are shown in appendix C.

We are also able to plot the p.d.f. for each model and for each tenor. Figure 9
shows the p.d.f. for the 6M tenor at di�erent maturities for a ll the models. The other
tenors present almost identical shapes, by di�ering from the 6M only for the center
of the peaks, since each tenor's p.d.f. is centered on its ownforward rate. With
the chosen set of parameters, the p.d.f. of the third model implies a practically nil
volatility. The other distribution for the other two models , both in the constant and
time variant parameters, are multi-modal, due to the replacement mechanism.
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(a) Model 1 - Constant parameters (b) Model 1 - Time Variant parameters

(c) Model 2 - Constant parameters (d) Model 2 - Time Variant parameters

(e) Model 3 - Constant parameters (f) Model 3 - Time Variant parameters

Figure 7: Volatility smiles for a caplet with expiry 10 yearsand tenor 6M. Ois rate is
modelled by Black model with implied volatility equal to 30%.
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(a) Model 1 - Constant parameters (b) Model 1 - Time Variant parameters

(c) Model 2 - Constant parameters (d) Model 2 - Time Variant parameters

(e) Model 3 - Constant parameters (f) Model 3 - Time Variant parameters

Figure 8: An example of volatility surfaces for a caplet with expiry 10 years and tenor
6M. Ois rate is modelled by Black model with implied volatility equal to 30%.
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(a) Model 1 - Constant parameters (b) Model 1 - Time Variant parameters

(c) Model 2 - Constant parameters (d) Model 2 - Time Variant parameters

(e) Model 3 - Constant parameters (f) Model 3 - Time Variant parameters

Figure 9: P.d.f. for Libor-Ois basis refering to 6M tenor
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6 Conclusions
In the present paper we provided a framework that is based entirely on micro-
founded inference and credit risk arguments: all of the assumptions, dynamics and
parameters derive from considerations on how market practitioners typically deal
with the Libor-Ois basis.

The framework is 
exible enough to capture the features of the Libor-Ois basis
quoted on the market. In fact it would be able to reproduce a broad variety of
complex basis term structures given the right time structure for the replacement
parameters. We consider such a feature one of the strengths of our setup. Since the
replacement parameters in our models have a straightforward interpretation, they
provide also a simple tool to analyze and interpret Libor-Ois basis expectations
implied in market quotes.

Furthermore, the present framework addresses the issue of market illiquidity for
some regions of the term structure. In fact, in most cases available market quotes
are not su�cient to cover the whole Libor-Ois basis term stru cture for a given tenor:
practitioners can use our framework to deduce the illiquid parts of the curves for
all tenors from the quotes of actively traded instruments. In our practical examples,
the liquid 3M and 6M indexed instruments were su�cient to rep roduce the entire
set of curves.

We noticed a rather high probability of replacement of the Libor panel: this
is likely due to the fact that not actively traded assets entered in the calibration
process. This factor leads to high replacement intensity, which in turn leads to small
volatility for Libor-Ois basis distributions.

If we consider only actively traded instruments, we suspectthat reasonable re-
placement parameters will be su�cient for calibration. Our framework could then
be used to provide a more suitable interpolation and extrapolation method for the
entire Libor-Ois basis term structure.

26



References
[1] F.M. Ametrano and M. Bianchetti. Everything you always w anted to know

about multiple interest rate curve bootstrapping but were afraid to ask. Available
at www.ssrn.com, 2013.

[2] A. Castagna and F. Fede.Measuring and Management of Liquidity Risk. Wiley,
2013.

[3] J. C. Cox, J. E. Ingersoll, and S. A. Ross. A theory of the term structure of
interest rates. Econometrica, 53:385{467, 1985.

[4] F. Mercurio. Interest rates and the credit crunch: New formulas and market
models. Available at http://papers.ssrn.com, 2010.

[5] F. Mercurio. LIBOR Market Models with Stochastic Basis. Available at
http://papers.ssrn.com , 2010.

[6] N. Moreni and A. Pallavicini. Parsimonious hjm modelling for multiple yield-
curve dynamics. Available at www.ssrn.com, 2013.

[7] M. Morini. Solving the puzzle in the interest rate market. Available at
www.ssrn.com, 2009.

27



A Model 1: Technical Details

A.1 The Transition Density
We have introduced above the concept of representative banks: this concept makes
unnecessary to model each single Libor member's default intensity dynamics, thus
simplifying the modelling process restricting the analysis the default intensity of
the representative banks. This representative agent is clearly not default risk free,
in fact its default is modelled by a (possibly stochastic) default intensity.

There might be more than one transition event occurring in the future, but
since each of these events implies a process reset, we are interested only in the last
transition event and its subsequent new process for the default intensity. The repre-
sentative bank replacement is a Markov continuous time stochastic process, with two
states f H; L g and an instantaneous Markov transition matrix A (t) 2 R2� 2. When-
ever a transition event is extracted in a future time � > 0, the new representative
bank (which in general may be eitherH or L , with probabilities derived from A (t)),
replaces the previous representative bank completely. The switching event process is
independent from the Ois rate dynamics and all of the possible � v processes.

Let z 2 f H; L g. The representative bank has instantaneous replacement proba-
bilities that depend on its current state, enclosed in the instantaneous replacement
matrix A (t), de�ned as:

A (t) =
�

aHH (t) aLH (t)
aHL (t) aLL (t)

�
(46)

The A (t) matrix is deterministic and it includes all the possibilit ies in which the
representative bank is replaced by a new representative agent, but it doesn't include
the possibility that no replacement takes place.

More speci�cally, we de�ne:

� aHH (t) � dt : probability that in ( t; t + d t) the current H bank is replaced by
a new H bank

� aLH (t) � dt : probability that in ( t; t + d t) the current L bank is replaced by a
new H bank

� aHL (t) � dt : probability that in ( t; t + d t) the current H bank is replaced by a
new L bank

� aLL (t) � dt : probability that in ( t; t + d t) the current L bank is replaced by a
new L bank.

The instantaneous A (t) matrix may be decomposed in two matrices,Â (t) and
�̂ (t).

�̂ (t) =
�

� H (t) 0
0 � L (t)

�
(47)

Â (t) =
�

âHH (t) âLH (t)
âHL (t) âLL (t)

�
(48)

A (t) = Â (t)� (t) (49)

with � H (t) � 0, � L (t) � 0, âHH (t) + âHL (t) = 1, âLH (t) + âLL (t) = 1
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Intuitively, � H (t) and � L (t) are the hazard rates of the inhomogeneous Poisson
processes driving the replacement events forH and L respectively, while Â (t) con-
tains the probabilities of HH , HL , LH and LL transitions once a replacement event
is extracted from the Poisson processes ofH and L.

In order to consider the possibility that the current bank is not replaced in
(t; t + d t), we de�ne the instantaneous stability matrix B (t) as:

B (t) =
�

� (aHH (t) + aHL (t)) 0
0 � (aLL (t) + aLH (t))

�
(50)

This matrix includes the possibility of no replacement, depending on its current
state (H or L). Finally, we de�ne the instantaneous transition matrix C(t) asC(t) =
A (t) + B (t), which includes both the possibility of replacement and noreplacement
taking place:

C(t) =
�

� aHL (t) aLH (t)
aHL (t) � aLH (t)

�
(51)

De�ne

� pH (t) as the probability of having a type H representative bank at time t � 0;

� pL (t) as the probability of having a type L representative bank at time t � 0:
obviously we have that pL (t) + pH (t) = 1 8t � 0;

� p(t) as the vector (pH (t); pL (t)).

At the initial time t = 0, the representative bank is in state H , i.e.: pH (0) = 1 and
pL (0) = 0.

The instantaneous transition dynamics are described by thefollowing equation:

dp(t)
dt

= C(t)p(t) (52)

The solution of this O.D.E., given the initial condition, is :

p(t) = exp
� Z t

0
C(u)du

�
p(0) (53)

where we use a matrix exponential, de�ned as:

exp
�
M

�
=

+ 1X

k=0

M k

k!
(54)

where M 0 = I , the identity matrix.
Although its calculation might seem cumbersome at �rst, we can simplify it by

expressing it in terms of the eigenvalues� 1 and � 2 and eigenvectors ofM (i.e. diago-
nalizing or triangulating it). If � 1 and � 2 are distinct, M is surely diagonalizable. Let
V indicate the diagonalization (or triangulation, if diagon alization is not possible)
base.

~M = VMV � 1 =
�

� 1 0
0 � 2

�

Using basic linear algebra properties, this matrix exponential is simply rewritten as:

eM = V � 1e
~M V = V � 1

�
e� 1 0
0 e� 2

�
V
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If � 1 = � 2 = � , M may not be always diagonalized, but we can always �nd out
the Jordan matrix:

~M = VMV � 1 =
�

� 1
0 �

�

In this case, the matrix exponential may be rewritten as:

eM = V � 1e
~M � V = V � 1

�
e� e�

0 e�

�
V

If we want to derive the probability of no replacement taking place in the interval
(0; ts) we have to solve the following O.D.E.

dpNR (t)
dt

= B (t)pNR (t) (55)

with initial condition pNR (0) = p(0). The solution of this O.D.E., given the initial
condition, is:

pNR (t) = exp
� Z t

0
B (u)du

�
p(0) (56)

We remind that B is diagonal by construction and therefore the matrix exponential
calculation is straightforward:

exp
� Z t

0
B (u)du

�
=

=

0

B
B
@

exp
�

�
Rts

0

�
aHH (u) + aHL (u)

�
du

�
0

0 exp
�

�
Rts

0

�
aLH (u) + aLL (u)

�
du

�

1

C
C
A

(57)

Now let us de�ne wHH (ts; � ) , with 0 < � < t s, as the probability density
function at time ts of having a H bank with last entrance instant located in the
interval ( �; � + d � ); moreover, let us de�ne wHL (ts; � ) as the analogous probability
as before, but collapsing in aL bank instead: we group both in a vectorwH (ts; � ):

w(ts; � ) = ( wHH (ts; � ); wHL (ts; � )) (58)

In order to derive the equation that de�nes this vector, we make use of the following
argument: suppose the bank at a certain instant� is either in a state H or L . We

apply the integrated transition matrix exp
�

R�
0 C(u)du

�
to the initial state vector

p(0) to derive the probability of transition to that state; th en we suppose that a
replacement takes place in (�; � + d � ). We multiply the previous result by A (� ) � d�
and �nally, since we assumed this was the last replacement taking place, we multiply

the result by the integrated stability matrix exp
�

Rt
� B (u)du

�
.

�
wHH (ts; � )
wHL (ts; � )

�
� d� = exp

� Z ts

�
B (u)du

�
A (� ) exp

� Z �

0
C(u)du

� �
1
0

�
� d� (59)

All the � 2 (0; ts) are possible and admissible, therefore we can integrate over the
whole (0; ts) interval, as we will later actually do.
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We have to keep in mind that there is also the possibility that no replacement
takes place in the entire (0; ts) interval, the probability of which is given by:

wH; 0(ts) =
�
1 0

�
exp

� Z ts

0
B (u)du

� �
1
0

�
(60)

Remark A.1. The weights always integrate to one. To see that consider thefol-
lowing chain of equalities

w(t; � ) = exp
� Z t

�
B (u)du

�
A (� ) exp

� Z �

0
C(u)du

�
w0 =

= exp
� Z t

�
B (u)du

��
C(� ) � B (� )

�
exp

� Z �

0
C(u)du

�
w0 =

=
@

�
exp

�
Rt

� B (u)du
�

exp
�

R�
0 C(u)du

��

@�
w0

(61)

therefore:

Z t

0
w(t; � )d� =

�
exp

� Z t

0
C(u)du

�
� exp

� Z t

0
B (u)du

��
w0 (62)

and �nally:

Z t

0
w(t; � )d� + exp

� Z t

0
B (u)du

�
w0 = exp

� Z t

0
C(u)du

�
w0 (63)

Since exp
�

Rt
0 C(u)du

�
is a Markov Matrix, and since wH; 0 + wL; 0 = 1 , the

resulting �nal weights will surely add up to one.

A.2 Marginal Libor-Ois Basis P.D.F.
Between replacement events, the Libor-Ois basis p.d.f. is given simply by shifting
the credit spread p.d.f. in time by the last replacement time � and choosingH or L
default intensity parameters depending on its current state z. This means that the
p.d.f. is conditional on a speci�c last replacement event in� : �p Q

H ( ~S; ts � �; t s � � + � )
and �p Q

L ( ~S; ts � �; t s � � + � ) for H and L states respectively (where �pQ
z is the marginal

p.d.f of a credit spread for az-type bank, for a deposit starting in ts and maturing
in ts + � ).

In order to derive the forward spread p.d.f., we need to condition it on:

� a certain state z 2 f H; L g

� last replacement event in� 2 (0; ts)

� survival until ts � �

Given a SDE speci�cation for � , the probability density function of x is:

x ts � � = EQ
�
1�

� F >t s � �
	 � exp

�
�

Z ts � � + �

ts � �
� z(u)du

� �
�
�
�F ts � �

�
(64)

x ts � � � f Q
z (x; t s � �; t s � � + � ) (65)
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We need to derive an expression forf Q
z (x; t s � �; t s � � + � ). In order to do

so, we premise some mathematical technicalities. Suppose indeed that a random
variable x is distributed according to a marginal p.d.f. a(x). Suppose that another
random variable y is related to x by a deterministic, invertible and di�erentiable
relationship, i.e. y = b( x) and x = b � 1(y). We wish to calculate the marginal p.d.f.
of y, c(y).

P
�
y 2 (y; y + d y)

�
= P

�
x 2

�
b� 1(y); b� 1(y) +

db� 1(y)
dy

� dy
��

c(y) � dy = a
�

b� 1(y)
�

�
db� 1(y)

dy
� dy

c(y) = a
�

b� 1(y)
�

�
db� 1(y)

dy

(66)

De�ne
fSP(t; T ) = EQ [� F > t jF t ] = EQ

�
e�

RT
t � (u)du

�
�
�
�F t

�
(67)

and
gPD (t; T ) =

1
fSP(t; T )

� 1 (68)

The spread ~Sz(t; t s � �; t s � � + � ) is de�ned as:

~Sz(ts � �; t s � � + � ) =
Lgd

�
gPD z(ts; ts + � ) =

Lgd
�

�
1
x

� 1
�

(69)

Given the p.d.f. of x, f Q
z (x), we need to derive the p.d.f. of ~S, denoted by �pQ

z ; we
�rst invert the relationship between x and ~S:

x = �( ~S) =
1

�
Lgd � ~S + 1

(70)

and then apply the classical probability result to obtain a p.d.f. of an invertible
function of the ~S variable:

�p Q
z ( ~S; ts; ts + � ) =

�
�
�
�
d�

d ~S

�
�
�
� � f Q

z (x; t s; ts + � ) (71)

where �pQ
z is the risk neutral marginal p.d.f of a credit spread for az-type bank, for

a deposit starting in ts and maturing in ts + � . We �nally obtain:

�p Q
z ( ~S; ts; ts + � ) =

�
Lgd

�
f z(�( ~S); ts; ts + � )

�
�

Lgd
~S + 1

� 2 (72)

Equation (72) gives the p.d.f. of ~S(ts � �; t s � � + � ) = Lgd
�

gPD z(ts � �; t s � � + � )
between switching events. This p.d.f. is conditional on a speci�c last replacement
event in � : �p Q

H ( ~S; ts � �; t s � � + � ) and �p Q
L ( ~S; ts � �; t s � � + � ) for H and L states

respectively. We need to derive the complete density, accounting for all possible
� 2 (0; ts). To this end, in analogy with 3.3.1, consider the three cases:

1. No replacement of the representative agent occurs in (0; ts)
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2. One or more replacements occur in (0; ts), with a last replacement event in
� 2 (0; ts) collapsing in state H

3. One or more replacements occur in (0; ts), with a last replacement event in
� 2 (0; ts) collapsing in state L

The respective probabilities are:

1. wH; 0(ts)

2. wHH (ts; � )

3. wHL (ts; � )

For each of these cases, we will derive the p.d.f. for~S(ts; ts � � ).

Case 1 Initially, the representative agent is of type H , therefore the initial
density is: �p Q

H ( ~S; ts; ts + � ). We multiply this density by the probability of remaining
in the initial state until ts:

gQ
1 ( ~S; ts; ts + � ) = wH; 0(ts) � �p Q

H ( ~S; ts; ts + � ) (73)

Case 2 The conditional density in this case is �pQ
H (S; ts� �; t s� � + � ). This, if we

assume a speci�c� 2 (0; ts). The weighted density iswHH (ts; � ) � �p H (S; ts � �; t s + � ).
Then, we have to integrate for all possible replacement events � 2 (0; ts).

gQ
2 ( ~S; ts; ts + � ) =

Z ts

0
wHH (ts; � ) � �p Q

H ( ~S; ts � �; t s � � + � )d� (74)

Case 3 The conditional density in this case is �pQ
L ( ~S; ts � �; t s � � + � ). This, if

we assume a speci�c� 2 (0; ts). The weighted density is wHL (ts; � ) � �p L ( ~S; ts � �; � ).
Then, we have to integrate for all possible replacement events � 2 (0; ts).

gQ
3 ( ~S; ts; ts + � ) =

Z ts

0
wHL (ts; � ) � �p Q

L ( ~S; ts � �; t s � � + � )d� (75)

Complete result Adding up these three terms we get the �rst part of the
spread density:

gQ( ~S; ts; ts + � ) = gQ
1 ( ~S; ts; ts + � ) + gQ

2 ( ~S;0; ts; ts + � ) + gQ
3 ( ~S; ts; ts + � ) (76)

A.3 Conditional Libor-Ois Basis P.D.F.
In order to derive the conditional basis p.d.f. for this model, we need to know more
than the current Libor-Ois basis S. Therefore, denote the state variablev as:

v =
�
S;z; �

�
where S 2 R+

0 , z 2 f 0; 1g � f 0; 1g and � 2 R+
0

~z : f H; L g ! f 0; 1g � f 0; 1g is a function that maps state H in
�
1; 0

�
and state

L in
�
0; 1

�
.

~z(H ) =
�
1; 0

�

~z(L ) =
�
0; 1

�

Given two time 0 < t 1 < t 2, we would like to express the multivariate conditional
p.d.f. of v (t2) as a function of v (t1).
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As a prerequisite, we need the conditional p.d.f. ofu =
�
~z; �

�
. Since the re-

placement dynamics are independent from the other dynamics, this is a relatively
straightforward task. First of all, we calculate the probabilities of:

1. having no replacement events in (t1; t2]

P
�

� 2 > t 2
�
� ~z(t2) = ~z(t1) = �z1

�
= �z0

1 � exp
� Z t2

t1

B (u)du
�

� �z1 (77)

2. having at least one replacement event in (t1; t2], with last replacement time
� 2 2 (t1; t2], and with previous last replacement time � 1 2 (0; t1]. Notice how
this calculation does not depend on� 1

P
�

� (t2) 2 (� 2 + d � 2)
�
� ~z(t2) = �z2 ; ~z(t1) = �z1; � (t1) = � 1

�
=

= �z0
2 � exp

� Z t2

� 2

B (u)du
�
A (� 2) � exp

� Z � 2

t1

C(u)du
�

� �z1d� 2

(78)

Let p̂Q
z ( ~S2; S1; t1; t2; � ) be the risk neutral conditioned marginal p.d.f of a credit

spread ~S2 for a z-type bank, given the value of the spread int1, for a deposit starting
in t2 and expiring t2 + � . The respective Libor-Ois basis conditional p.d.f.'s are:

1.

hQ
1

�
~S2; S1; z1; z1; t2; t1; � 1; �

�
= p̂ Q

z1

�
~S2; S1; t1 � � 1; t2 � � 1; �

�
(79)

2.

hQ
2

�
~S2; S1; z2; z1; t2; t1; � 2; � 1; �

�
= p̂ Q

z2

�
~S2; S1; 0; t2 � � 2; �

�
(80)

Combining the previous steps, the �nal Libor-Ois basis conditional p.d.f.'s for
each case are:

1.

gQ
1

�
~S2; S1; z1; z1; t2; t1� 1; � 1; �

�
=

= ~z0
1 � exp

� Z t2

t1

B (u)du
�

� ~z1 � hQ
1

�
~S2; S1; z1; z1; t2; t1; � 1; �

� (81)

2.

gQ
2

�
~S2; S1; z1; z1; t2; t1� 1; � 1; �

�
=

= ~z0
2 � exp

� Z t2

� 2

B (u)du
�
A (� 2) � exp

� Z � 2

t1

C(u)du
�
�

� ~z1 � hQ
2

�
~S2; S1; z2; z1; t2; t1; � 2; � 1; �

�
(82)
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B Model 3: Technical Details

B.1 The Transition Density
We derive the transition density for the Model 3. Let

w(t) =
�

wH (t)
wL (t)

�

be the vector whose elements represent the fraction of banksH and L in the panel.
Obviously wH (t) + wL (t) = 1 and

w(0) =
�

wH (0)
wL (0)

�

Denote with

' (u; t ) =
�

' H (u; t )
' L (u; t )

�
(83)

the density function that de�nes the fraction of banks in the panel that enters in the
panel in [u; u + du] and remains in the panel until t . Moreover we have the following
trivial conditions on ' (u; t ): ' (u; t ) = 0 for every t < u , ' (u; t ) = 0 for every t < 0
and ' (u; t ) = 0 for every u < 0.

Every partition in the panel changes according to an inhomogeneous exponential
decay process, thus in every in�nitesimal time interval [t; t + dt] a fraction � (t) of a
speci�c slot leaves the panel (to be replaced by new banks). Denote with z 2 f H; L g
a variable indicating the type of representative agent. Thepanel's partition occupied
by banks of type z that entered in time 0 < u � t decays according to the following
equation:

bz(u; t ) = exp
�

�
Z t

u
� z(v) � dv

�
(84)

De�ne the B (u; t) matrix as:

B (u; t) =
�

bH (u; t ) 0
0 bL (u; t )

�
(85)

In order to understand the dynamic of entries and exits, de�ne 
 (u) as the \entry"
density, i.e.: a function of time that returns the in�nitesimal fraction o f new banks
that entered exactly in the interval (u; u + d u), measuredexactly in that interval,
since for t > u it will decrease exponentially due to further replacements. Then:

' (u; t ) = B (u; t)
 (u) (86)

Note that 
 (u) = lim t ! u ' (u; t ), the fraction of banks entered at time u observed at
the same timeu. Heuristically this limit guarantees that the system is conservative,
i.e. the sum of the fractions ofH and L in the panel is constant to 1.

Whenever an in�nitesimal fraction of a partition leaves the panel, it is replaced
by fraction of new representative banks that may be of typeH or L . The turnover
of banks in the panel at a time instant t is modelled with the matrix

A (t) =
�

aHH (t) aLH (t)
aHL (t) aLL (t)

�
(87)
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If this fraction being replaced is of typeH , a part of it equal to aHH will be replaced
by H banks, and the remaining part, equal to aHL = 1 � aHH , by a new L bank
Similarly, if the fraction being replaced is of type L , a part of it equal to aLH will be
replaced by a newH bank and the remaining part, equal toaLL = 1 � aLH , by a new
L bank. The elementsA (t) are fractions, not probabilities. If we interpreted them
as probabilities, then ' (u; t ) would be a stochastic process itself, and the formulas
that follow would determine only its expected value.

De�ne the replacement matrix A (t) as:

A (t) =
�

aHH (t) aLH (t)
aHL (t) aLL (t)

�
(88)

where the matrix elements can be a deterministic function oftime. Whenever a
partition of banks leaves the panel, the new banks that replace them are picked
from the population of banks which are not panel members yet.

Consider a speci�c panel's partition that entered the panel in the in�nitesimal
interval [ u; u + du). De�ne the instantaneous amount by which this slot decreases
as the following function of time:

cz(u; t ) = exp
�

�
Z t

u
� z(v) � dv

�
� � z;t (89)

for z 2 f H; L g.
De�ne the matrix C(u; t) as:

C(u; t) =
�

cH (u; t ) 0
0 cL (u; t )

�
(90)

Since the panel is conservative, and the fractions of panelsadd up to one at any
time, we have that the fraction of banks that entered in [u; u + d u) is given by the
sum of the amounts by which the previous banks decreased. If it were not so, the
panel population would not remain constant, it would either decrease to zero or
increase inde�nitely.

Then we may derive the following recursive integral equation for 
 (u):


 (u) = A (u)C(0; u)w(0) +
Z u

0
A (u)C(v; u)
 (v)dv (91)

The �rst term in the right-hand side of the equation is the contribution to 
 (u)
given by the replacement of what is left of the initial H -type panel. The second
term is the integral of the contributions from the replacement of what is left of all
the new banks that entered before our current bank, that is in(0; u).

This equation is unpractical to solve. Luckily, there is a simpler way to obtain an
explicit expression for
 (u). Consider the variablew(u) =

�
wH (u) wL (u)

�
denoting

the percentage ofH and L banks in the panel at time u (without any information
on when each single fraction of new representative banks entered). w(u) obeys a
simple di�erential equation:

dw
du

=
�
A (u) � I

�
� (u)w(u) (92)

whose solution is given by a matrix exponential multiplied by the initial condition:

w(u) = exp
� Z u

0

�
A (v) � I

�
� (v)dv

�
w(0) (93)
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Now, every instantaneous variation in w(u) is given by two terms: the entry of
new representative banks inu and the exit of previously entered banks, and of what
is left of the initial panel.

dw
du

= � � (u)w(u) + 
 (u) (94)

Therefore 
 (u) is simply obtained by the following equation:


 (u) =
dw
du

+ � (u)w(u) =

= A (u)� (u)w(u)
(95)

B.2 Marginal Libor-Ois Basis P.D.F.
Given the preliminary analysis provided for the Model 1 in the Appendix A, we can
consider the stochastic variable Libor-Ois basis as the sumof the two components
derived above: the �rst is the weighted spread of the initial panel, the second is the
integral weighted average of the spreads of the new entries for t > 0.

~SLibor (ts; ts + � ) = ~S1(ts; ts + � ) + ~S2(ts; ts + � ) (96)

where

~S1(ts; ts + � ) = bH (0; ts) � ~SH (ts; ts + � ) + bL (0; ts) � ~SL (ts; ts + � ):

and the weights are given in the section B.1 of this appendix.We will now prove
that, given our deterministic weighting, the second component ( ~S2(ts; ts + � )) has
zero integrated variance.

Denote the unweighted variance of a single new bank of typez 2 f H; L g, which
entered the panel in 0< u � t, with � 2

z (ts � u; ts � u + � ). The weight of this bank
is ' z(u; t ) � dt, de�ned above. With some abuse of notation, we notice that:

var Q � ~S2(ts; ts + � )
�

=
Z t

0

�
' H (u; t ) � du

� 2� 2
H (ts � u; ts � u + � )+

+
Z t

0

�
' L (u; t ) � du

� 2� 2
L (ts � u; ts � u + � )

(97)

Considering that:

� The weight density' z(u; t ) for H and L is always �nite:

0 < ' z(u; t ) < + 1 8 t (98)

� The integrated weights of the new H and L banks, plus what is left of the
initial panel, always add up to one:

Z t

0
' H (u; t ) � du +

Z t

0
' L (u; t ) � du+

+ wH; 0 � exp
� Z t

0
� H (u) � du

�
+ wL; 0 � exp

� Z t

0
� L (u) � du

�
=

= 1 8t

(99)
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� The variance for every single newH and L bank is always �nite:

0 < � 2
z (ts; ts + � ) < + 1 8 t (100)

� the integrand contains a second order in�nitesimal,
�
' z(u; t ) � du

� 2, which
integrates to zero,

then the integrated variance will be zero for every futuret. Therefore we can consider
~S2(ts; ts + � ) as a deterministic function of time and equal to S2(ts; ts + � ), which
is �nite and not negligible:

S2(ts; ts + � ) =

=
Z t

0
' H (u; t ) � SH (ts � u; ts � u + � ) � du +

Z t

0
' L (u; t ) � SL (ts � u; ts � u + � ) � du

(101)

The spread associated to the initial panel,~S1(ts; ts + � ), has non-zero variance for
�nite t > 0, and it is weighted by bH (0; ts).

Denote with ~S(ts; ts + � ) =
�

~SH (ts; ts + � ); ~SL (ts; ts + � )
�

the vector containing
single static counterparty forward credit spreads. Given our assumption of indepen-
dence between~SH and ~SL , the variance-covariance matrix is diagonal:

var Q
�

~S(ts; ts + � )
�

=
�

var Q
�
SH (ts; ts + � )

�
0

0 var Q
�
SL (ts; ts + � )

�
�

Considering that the initial single spreads are dampened bythe deterministic
replacement process, then we have that:

var
�

~SLibor (ts; ts + � )
�

=

= w 0
0 � B 0(0; ts) � var Q

�
~S(ts; ts + � )

�
B (0; ts) � w0

(102)

In order to calculate the marginal p.d.f. of ~SLibor (ts; ts + � ), we simply have to
calculate the marginal p.d.f. of ~S1, and then shift it by an amount equal to S2, since
we have shown that ~S2 is actually a deterministic variable.

Now, ~S1(ts; ts+ � ) is a linear combination of ~SH (ts; ts+ � ) and ~SL (ts; ts+ � ), which
are independent. As with any linear combination of independent random variables,
its marginal p.d.f. is obtained as follows. The weights of this linear combination are
wH (0) � bH (0; ts) and wL (0) � bL (0; ts). To obtain the marginal p.d.f. of ~S1(ts; ts + � ),
transform the marginal p.d.f.'s of ~SH (ts; ts + � ) and ~SL (ts; ts + � ) according to their
respective weights and then convolve them. Results are developed as follows. If
~SH (ts; ts + � ) � �p Q

H ( ~SH ; ts; ts + � ) and ~SL (ts; ts + � ) � �p Q
L ( ~SL ; ts; ts + � ) , then:

~S1(ts; ts + � ) � gQ
1 ( ~S1; ts; ts + � )

where

gQ
1 ( ~S1; ts; ts + � ) =

�
1

jbH (0; ts)wH (0)j
� �p Q

H

� ~S1(ts; ts + � )
bH (0; ts)wH (0)

; ts; ts + �
��

�

�
�

1
jbL (0; ts)wL (0)j

� �p Q
L

� ~S1(ts; ts + � )
bL (0; ts)wL (0)

; ts; ts + �
�� (103)
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where � denotes the convolution operator. Then the complete spreadhas the fol-
lowing p.d.f.:

~SLibor (ts; ts + � ) � gQ
1

�
~S(ts; ts + � )Libor � S2(ts; ts + � ); ts; ts + �

�
(104)

since, as previously stated,S2(ts; ts + � ) is a deterministic shift to be applied to
the marginal p.d.f. of ~S1.

B.3 Conditional Libor-Ois P.D.F.
Since in this model variant the integral of spreads from new banks follows a deter-
ministic process, we can derive the overall spread conditional p.d.f. through simple
transformations and shifts of the p.d.f. of ~S1(ts; ts + � ). Let us then derive the con-
ditional p.d.f. of ~S1(ts; ts + � ). Given a future time t, with 0 < t < t s, we need to
condition on two variables: ~SH (t; t s; ts+ � ) and ~SL (t; t s; ts+ � ), which are respectively
the H and L spreads of the initial panel

P
� ~S1(t; t s; ts + � ) 2 (x; x + d x)

�
� ~SH (t; t s; ts + � ) = yH ; ~SL (t; t s; ts + � ) = yL

�
=

=
1

wH (0)bH (0; t)
� p̂Q

H

�
1

wH (0)bH (0; t)
x; t; t s; ts + �; y H

�
�

�
1

wL (0)bL (0; t)
� p̂Q

L

�
1

wL (0)bL (0; t)
x; t; t s; ts + �; y L

�

(105)

where � indicates the convolution operator. Since ~S2 is actually a deterministic
variable, we can calculate the conditional p.d.f. of~SLibor (ts; ts+ � ) simply by shifting
by S2 the conditional p.d.f. of ~S1, obtained in the previous equation. Denotex � =
x � S2(ts; ts + � ), then

P
� ~SLibor (t; t s; ts + � ) 2 (x; x + d x)

�
� ~SH (t; t s; ts + � ) = yH ; ~SL (t; t s; ts + � ) = yL

�
=

P
� ~S1(t; t s; ts + � ) 2 (x � ; x + d x � )

�
� ~SH (t; t s; ts + � ) = yH ; ~SL (t; t s; ts + � ) = yL

�

(106)

hence obtaining the desired conditional p.d.f. of~SLibor .
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C Implied Volatility Smiles and Surfaces

(a) Model 1 - Constant parameters (b) Model 1 - Time Variant parameters

(c) Model 2 - Constant parameters (d) Model 2 - Time Variant parameters

(e) Model 3 - Constant parameters (f) Model 3 - Time Variant parameters

Figure 10: Volatility smiles for a caplet with expiry 10 years and tenor 1M. Ois rate is
modelled by Black model with implied volatility equal to 30%.
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(a) Model 1 - Constant parameters (b) Model 1 - Time Variant parameters

(c) Model 2 - Constant parameters (d) Model 2 - Time Variant parameters

(e) Model 3 - Constant parameters (f) Model 3 - Time Variant parameters

Figure 11: Volatility smiles for a caplet with expiry 10 years and tenor 3M. Ois rate is
modelled by Black model with implied volatility equal to 30%.
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(a) Model 1 - Constant parameters (b) Model 1 - Time Variant parameters

(c) Model 2 - Constant parameters (d) Model 2 - Time Variant parameters

(e) Model 3 - Constant parameters (f) Model 3 - Time Variant parameters

Figure 12: Volatility smiles for a caplet with expiry 10 years and tenor 1Y. Ois rate is
modelled by Black model with implied volatility equal to 30%.
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(a) Model 1 - Constant parameters (b) Model 1 - Time Variant parameters

(c) Model 2 - Constant parameters (d) Model 2 - Time Variant parameters

(e) Model 3 - Constant parameters (f) Model 3 - Time Variant parameters

Figure 13: Volatility surfaces for a caplet with expiry 10 years and tenor 1M. Ois rate is
modelled by Black model with implied volatility equal to 30%.
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(a) Model 1 - Constant parameters (b) Model 1 - Time Variant parameters

(c) Model 2 - Constant parameters (d) Model 2 - Time Variant parameters

(e) Model 3 - Constant parameters (f) Model 3 - Time Variant parameters

Figure 14: Volatility surfaces for a caplet with expiry 10 years and tenor 3M. Ois rate is
modelled by Black model with implied volatility equal to 30%.
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(a) Model 1 - Constant parameters (b) Model 1 - Time Variant parameters

(c) Model 2 - Constant parameters (d) Model 2 - Time Variant parameters

(e) Model 3 - Constant parameters (f) Model 3 - Time Variant parameters

Figure 15: Volatility smiles for a caplet with expiry 10 years and tenor 1Y. Ois rate is
modelled by Black model with implied volatility equal to 30%.
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D Abbreviations and Notation

D.1 General Notation
� CIR = Cox-Ingersoll-Ross

� Caplet Ois : undiscounted Ois caplet price function of strike K and other
variables

� Caplet Libor : undiscounted Libor caplet price function of strike K and other
variables

� D D (t; T ) = default risk-free stochastic discount factor from T to t

� f Q = probability density function for x, the ratio of survival probabilities at
depo end and depo start,. associated to a Cox Process.

� gQ = Libor-Ois basis probability density function

� G ts probability measure associated to thegSP(t; t s) numeraire

� H = High credit risk

� L = Low credit risk

� Lgd = Loss Given Default, usually set to 60%

� Ois = = Ovenight Indexed Swap Rate (used as risk-free rate proxy)

� p.d.f. = probability density function

� pQ = Credit Spread marginal probability density function

� p̂Q = Credit Spread conditional probability density function

� p� 2 (�;� ) = probability density function of a non-central � -squared random vari-
able with � degrees of freedom and� non-centrality parameter

� PD (t; T ) = EQ [D D (t; T )] = the price in t of default risk-free zero-coupon bond
expiring in T

� PD = expected default probability for a Cox Process

� PD = expected forward default probability for a Cox Process

� � = deterministic function that maps a Credit Spread ~S random variable into
its associated survival probability ratio x random variable

� S = Expected Credit Spread

� SLibor = Expected Libor-Ois basis

� ~S Credit Spread random variable

� ~SLibor Libor-Ois Basis random variable

� SP = Expected Survival Probability in a Cox Process

� fSP = the Random Variable denoting a stochastic Survival Probability in a
Cox Process

� ts = Depo Start Time

� � = Tenor

� � F = the random variable denoting the default time in a Cox Process

� x =
fSP(0;t s + � )

fSP(0;t s )
= random variable de�ned as the ratio of the survival proba-

bility at end and the survival probability at start of the hyp othetical depo

� z = label variable indicating whether a bank is of H or L type
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D.2 Model 1 Notation
� A (t) = instantaenous replacement matrix

� Â (t) = instantaneous transition probability matrix associate d to A (t)

� B (t) = instantaneous stability matrix, i.e., the instantaneou s probabilities of
no replacement taking place

� C(t) = overall transition matrix, i.e. includes the probabilit y of arriving in a
certain state z, including both cases of replacement and no replacement

� �̂ (t) = replacement events arrival intensities for H and L, associated toA (t)

� pNR (t) = probability of No Replacement taking place in (0 ; t).

� � 2 (0; t) = last replacement event in the interval (0 ; t)

� w(�; t s) = vector containing the probabilities of at least one replacement taking
place in (0; ts), collapsing in H or L respectively, assuming the last replacement
in (0; ts) has taken place in�

D.3 Model 2 Notation
� ~SM 1;z = Libor-Ois basis random variable according to Model 1, with initial

Libor Panel in state z

� SM 1;z = Expected Libor-Ois basis according to Model 1, with initia l Libor
Panel in state z

� ZH = subset of type H banks in initial panel

� ZL = subset of type L banks in initial panel

D.4 Model 3 notation
� A (t) = matrix containing the replacement fractions for banks who are driven

out of the panel by the decay process

� � (t) = intensity of the inhomogeneous decay process of the fractions of banks
that entered the panel beforet

� bz(u; t ) = exp
�

�
Rt

u � z(v) � dv
�

� cz(u; t ) = � z(t) � bz(u; t )

� 
 = vector containing the H and L components of the Libor Panel entry
density for new members

� ' (u; t ) = vector containing the H and L fractions of the panel who entered in
u, as observed at timet > u

� ~S1 = Libor-Ois basis random variable component associated to the remaining
banks of the initial panel

� S1 = Risk-Neutral expected value of ~S1

� S2 = Libor-Ois basis component associated to all the banks thathave entered
the panel after the initial members

� w(t) = vector containing the overall fractions of H and L banks in the panel
at time t
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