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Abstract

We introduce a set of models that explain the market phenomealogy of Libor
forward xings implied in swap prices. The models are all bagd on the idea that the
Libor xings refer to a panel of primary banks whose compositon may change over
time. This e ect is crucial to obtain the observed humped forward xing curves, that
could not be otherwise retrieved by a simple credit default nodel or by a forward
interest rate analogy. The models di er only in the assumptions on how the panel
composition will change in the future.

1 Introduction

Since the nancial crisis started in 2008 the Libor-Ois bass have been no more
negligible: this implies a major change in the evaluation ofinterest rate derivatives
and as a consequence the single curve interest rate modelsveabecome obsolete.

Ois rates can be approximately considered default risk-fre due to the fact that
they are derived from overnight deposit rates: therefore tiey embed the risk of
default overnight even when they are the reference rate fordnger maturities, e.g.
an Ois swap expiring in 10 years.
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Figure 1: Swap rate rates dealing in the market on Novembef'12014 (left hand side)
and implied Euribor-Eonia basis curves (right hand side).&irce: swap indicative quotes
provided by major brokers.

Libor spot and forward rates embed the risk that the borrower (a major bank
belonging to the relevant Libor panel, depending on the curency the debt is de-
nominated in) may go bankrupt before the expiry of the depodi. As such, a Libor
rate for, say, a 6-month deposit, include a spread over the @onth Ois rate to re-
munerate the lender for the risk of the borrower's default oer next 6 months. The
Ois-Libor basis is typically increasing with maturities (from the O/N to 1 year) for
spot Libor rates: one would expect also a similar behaviourdr forward Libor rates,
quoted as FRAs up to 24 months and implied in swap rates for loger maturities,
but this is not what market rates exhibit.

It is now well known that the forward basis curves, for all tenors, show a
\humped" shape: this phenomenon has been documented by som&uthors (see,
for example, Morini [7] and Ametrano and Bianchetti ([1], g ure 35). They nd
that the basis curves are initially increasing until a certain future time, and then
they start decreasing monotonically onwards, until an asynptotic value of a few
basis points is reached. A con rmation of the persistence othis feature, even in
a nancial environment with lower rates and Libor-Ois basis than the one dealing
in the period 2008-2010, is given in Figure 1, where we show ¢hmarket rates in
the EUR for swaps vs 3M, vs 6M, and Eonia on November 3 , 2014: from these
guotes we show a very basic bootstrap of the basis Euribor 3NEonia and Euribor
6M-Eonia.

Although the \humped" pattern in both curves is easily recognisable, it is worth
noting that the basis curves are very irregular even before ie 10 year maturity,
where the market is quite liquid and active. The weird slopesof the two curves be-
come apparent around the 15 year maturity, where the market tades less frequently.
Seemingly regular swap rate curves can generate greatly inosistent shapes of the
basis curves. A general model, based on grounds beyond thergile smoothing crite-
ria, can be useful also to regularise, interpolate and extrpolate the Libor-Ois basis
curves by tting it to more liquid tenors.

Previous Basis Spread Modelling includes the works by Meraio [5] and Moreni
and Pallavicini [6]. In the rst one, the author derives pricing formulae for linear
and volatility derivatives, assuming stochastic dynamicsfor the single forward Libor-
Ois basis, but no connection is established amongst spreads the di erent relevant
tenors (i.e.: 1, 3, 6, 12 months) and di erent future times. In the second work, the
authors extend the HIM framework to account for a multi-curve environment: the
model establishes a link amongst the forward Libor xings atdi erent future dates
on the same tenor by means of their dependence on two commonogthastic state
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variables, whose dynamics are capable to capture the nowaga typical humped
term structure. The link between the Libor on dierent tenor s is established via
two deterministic scaling functions for the rate level and the volatility level. The

framework is enough exible to t market prices, but no nanc ial or economic
rationale lies behind the type of functions and links choserby the two authors.

In general, the approaches to model Libor-Ois basis proposeso far by market
practitioners and academicians aim just at matching market prices, usually with
ad hoc assumptions, without trying to explain the evolution of the spreads by the
credit factor that they represent. Although these approaches can be fully justi ed
on the grounds of the their e ectiveness to the purpose, nonieless they rely on the
existence of a liquid market where all types of main instrumats (FRAs, swaps on
Libor with all the tenors, Caps&Floors) are actively traded and quoted. When the
market is not so liquid on some instruments €.g.. swaps vs 1M Libor for maturities
longer than 1 year), a general model can be used to evaluate ¢im, even if it is
calibrated on the traded liquid instruments. Clearly, this means that the model is
able to deduce the Libor-Ois basis for any future date and on ay tenor, which
implies it is based on the common risk factors driving all thespreads.

In what follows we introduce a uni ed set of models that are alde to reproduce the
\humped" shape of forward basis, yet that are capable to matd the upward sloping
basis curve for spot starting deposits. The models have sonm@ce properties: i) they
are based on the default risk generating the spreads, ii) the model simultaneously
basis for all the (major) tenors (1, 3, 6 and 12 months), iii) they all rely on the
factual assumption that the panel of banks, whom the Libor rders to, may change
over time and that the any defaulting, or credit worsened, ettity can be replaced
within the panel itself.

2 The Main ldea Underpinning the Frame-
work

The Libor rates can be thought to be made of two components: ila risk-free part,
generally considered to be equal to the Ois rate for the corigponding expiry, and ii) a
credit spread that remunerates the lender for the credit rik it bears in lending money
to a defaultable borrower. In our framework, the (Ois) risk-free rate is modelled as
independent of credit spread; moreover, the credit spreadsitypically referred to in
the market lore as the Libor-Ois basis. Besides, we will corider four major tenors:
1M, 3M, 6M and 1Y, used in most contracts; other spreads can belerived within
the approach that we will outline, although they are less use as a reference index in
interest rate derivatives. Additional factors, such as liquidity risk, are not directly
considered in this set of models, although their inclusions possible.

Classical credit spread models that consider a single couatparty, whose default
is commanded by a stochastic default intensity, generate aet of monotonically
increasing credit spread curves, starting from di erent initial values (spot spreads)
for our four tenors and reaching a common asymptotic value. A example is shown
in Figure 2.

Unfortunately this is not the type of term structures we observe in the market.
The Libor-Ois (credit spread) basis does not simply represa the risk related to a
single counterparty. Actually, the Libor rates are the interest rates, for the relevant
maturity and currency, that a panel of major banks is expectel to pay when bor-
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Figure 2: Forward credit spreads for deposits with respewdly 1M, 3M, 6M and 1Y
maturity, derived by assuming a stochastic default intengr that follows a CIR process
of the type in equation (29), with parameters  =0:06% =1:5; =1:0% =5:0%.

rowing money from a similar institutional counterparty. Fo r reasoning's sake, let us
think of the Libor panel as identi ed by a single representative bank.

The representative bank of the Libor panel is an entity whosedefault risk may
structurally change over time. By \structural change"”, we do not simply mean the
possibility that the default probability may stochastical ly evolve over time; we also
mean that, since the representative bank is a sort of averagsynthesis of the default
risks of the banks included in the panel, if the panel changesn its composition,
then also the default risk of representative bank will chang as well. This happens
even if the probabilities of default of the banks currently included in the panel, and
of the banks currently excluded, but which could potentially replace some of the
former ones, are deterministic and knownt

To make things concrete, suppose the Libor panel is made of 18anks all with
a probability to go bankrupt over next year equal to 1%: the representative bank
will trivially have a 1-year default probability of 1%. Assu me now a bank replaces
one of the current ones belonging to the panel, and let its deifult probability for 1
year be 0.8%. The representative bank should now have a 1-yedefault probability
of 0:98%. Hence, its default risk has changed even if we did not asse any deter-
ministic or stochastic evolution of the default probabilities of all the banks, either
included or outside the Libor panel.

In the real world, when one of the banks currently belonging 6 the Libor panel
experiences a worsening of its credit standing or even, in #gnextreme case, a default,
then it is expected to be replaced by a new external bank, witha good credit stand-
ing that will likely improve the average credit quality of th e panel. As a consequence,

1We do not claim we are introducing some revolutionary idea hee: we are simply trying to expose
what is very likely the way market agents (traders) think when they need to make a price for a spot
starting deposit or for a FRA. Similar explanations of the Libor panel composition, and change of it,
have been proposed also in older works, such as in Morini [7].

4
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one would expect the credit spread of the representative banto be lower.

The possibility that the panel changes its component bankss crucial to account
for the humped shape of the forward Libor-Ois basis. Actualy, restricting the ob-
servation to daily published Libor xings, one immediately realise that Libor-Ois
basis are increasing with the maturity of the depaosits. Thismeans that the market
expects a rising probability of default over time. This is na very strange, as credit
spread curves for single debtors, either corporates or bask usually show the same
upward slope. One would expect that the Libor-Ois basis for @iture dates (embed-
ded in the forward rates applied to forward starting deposits) show an upward slope
too; on the contrary, the prices of FRAs and of swaps quoted irthe market imply a
downward slope of the forward rates, after an initial increase up to the maturities of
3 - 5 years. Besides, even if market forward spreads are raigj, they do not re ect
the forward spreads implied in the Libor spot rates (see, forexample, Mercurio [4]).

From this phenomena, it is possible to deduce the reasoninghe lenders follow
in setting spot and forward rates: if one has to lend today (spt) a given amount
of cash to a bank of the panel, she knows exactly which is the dault risk she
would bear. This risk is condensed in the Libor-Ois basis fospot starting deposits,
which are increasing in time, meaning that a higher probabiity of default for the
representative bank is attached to longer maturities.

If the deposit is forward starting (as the one underlying FRAS), then the lender
should account for the fact that on that future date the representative bank is
no more the same as today, since some of the banks composingetbanel may be
replaced by new ones. The replacement can be due to the creditorsening or by
the default of one or more banks; the new banks entering in theganel to replace
the excluded ones will have very likely a better credit standng that would improve
the average credit quality of the panel and hence of the reprgentative bank, to
which the forward (FRA) Libor rates refers to. For this reason, the forward Libor
xings implied in the FRAs' and swaps' market price are not increasing, as the
spot spread curve would suggest, but decreasing, to take intaccount the general
expected improvement of the credit quality of the panel overtime, originated be the
possible changes of the panel of banks.

To summarise, the Libor-Ois forward basis is actually a wei@ited average of
forward spreads of the single members of the panel. If we assie that the market
expects a likely future change of the composition of the parigi.e.. some panel banks
could be replaced by new banks) and / or a change in the credit wrthiness of the
current members, then we would not get monotonically increaing curves anymore.
We will try to give a more visual representation of this concept

For simplicity, let us begin by assuming that market expectsonly improvements,
that is: changes in panel composition and / or panel memberstredit standing that
would result in a lower average credit spread. Given the cumnt spot Libor-Ois
basis curve, we would now have to include the future possibitly of a transition to a
substantially lower basis curve when computing expected fuure basis.

The resulting basis curve could then be seen as a gradual traition from a high
Libor-Ois basis curve, denoted asH and corresponding to the current panel, to a
low Libor-Qis basis curve, denoted ad.. Assume the market will begin to monitor
the new lower credit spread curve from a certain future time ewards; therefore we
can imagine theL basis curve as starting with a certain time delay, as can be &n
in Figure 3. At each time in the future, there will be a certain probability of a shift
from the Libor-Ois basis curveH to the curve L: at time 0 the expected Libor-Ois
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Figure 3: A simpli ed explanatory graph depicting the gradal transition from a High
forward Libor-Ois basis curve, to a Low forward Libor-Ois bsis curve (starting delayed),
due to a change of the representative bank.

basis curve will resemble the one depicted in the gure.

The set of models we will present in this article, all share tlis basic idea; they
di er only in the speci c risk-neutral dynamics of the expected future panel changes.
To make the models analytically tractable and usable in pratice, we make the
simplifying assumption that only two types of banks exist in the market: H and L,
with the former having a higher credit risk than the latter. T hese two types of banks
have the same type of dynamics for their respective defaultritensities, although a
di erent set of parameters refers to theH and the L class.

To specify the risk-neutral dynamics commanding the expead gradual transi-
tion from the H to the future L basis curve, let us start assuming that the initial
Libor panel is given in its composition of H and L banks. We consider three dif-
ferent assumptions for the transition dynamics, each one prducing a di erent nal
Libor-Ois basis modelling:

1. The initial Libor panel is made of a single representativebank that may
be totally replaced by a new, dierent, representative bank according to a
continuous-time Markov process with two states H and L) and a well de ned
instantaneous transition matrix.

2. The initial Libor panel is made of a given number of banks that di er in type
(H or L): the replacements occur at random discrete future times, dven by
continuous-time Markov process. At every random replacemet time, each of
the banks in the panel can be replaced by another bank of any fye, according
to a transition matrix.

3. The Libor panel is a continuous weighted average of bankshat di er in type
(H or L) and timing of entry in the panel: a deterministic continuou s-time re-
placement process drives the gradual replacement dynamit¢ewards a di erent
panel composition.

All of these models assume that the replacement dynamics arsdependent from
the single-counterparty default intensity dynamics and the Ois instantaneous rate
dynamics.
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Figure 4: Modularity of the modelling approach

We will structure the paper as follows:

1. Specify the assumptions for Ois instantaneous rate dynams and derive the
caplet and oorlet prices.

2. Specify the assumptions for single-counterparty defatlintensity dynamics and
derive the results for classical credit spreads

3. Specify separately for the three model variants, the trasition dynamics as-
sumptions and derive the respective results for expected edits spreads, spread
probability density functions, Libor caplet prices and implied volatility smiles.

Remark 2.1 (Modular Approach). We wish to highlight that one of the features of
our approach to basis modelling is modularity (see Figure 4)Actually, we separately
specify:

1. the dynamics for the (Ois) risk-free rate;

2. the default intensity dynamics, having two di erent sets d parameters for H
and L, but also sharing an identical type of dynamics for the two tyes of
banks;

3. the panel reshu ing/transition dynamics, according to t he chosen assumption
amongst the three proposed above;

Moreover, we assume a mutual independence between all of $keseparate dynamics.

All this means that the user is then free to choose her own prerfred dynamics
for the Ois and the default intensities, even if we will adopa CIR dynamics for all
of them in what follows. Our choice should be regarded as takgust for explanatory
purposes.
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3 Libor-Ois basis modelling

Assume that, for a given reference currency, a group of (majy banks enter the
Libor panel at time t. To simplify the analysis, we assume they are all equal to a
representative bank that can go bankrupt with known default probabilities for any
future date. The default probabilities can be considered asn average of the default
probabilities of the single banks of the panel: one may thinkhat if she lends money
at time t to one of these banks, she will bear an expected default riskgeial to that
referring to the representative bank?

Consider for the moment that the representative bank is exatly similar to a
speci ¢ institution with its own default risk; alternative ly said, lending spot, or
forward at a future date, an amount of money to the representdéive bank is no
di erent than lending to a speci ¢ bank operating in the mark et that wishes to
borrow (we will relax this assumption soon). The (risk-neutral) survival probability 3
of the representative bank of the Libor panel, at timet up to time T, is:

R
SP(;T)= EQ e « sI5F, (1)

where F is the time the default occurs,  is the (possibly stochastic) default
intensity, which we assume independent from interest rates We have also that
PD(;T)=1 SP(t;T).

Assume for the moment we want to price a deposit starting ints and expiring in
ts+ :the money is lent to a defaultable counterparty with a well de ned survival
probability SP(ts;ts + ). In case of default, we suer a percentage loss of the
notional of the deposit market value equal to the Loss Given Default Lgd. To
further simplify the notation, assume a unit notional.

The simply compounded risk-free (Ois) rate for the period {s;ts+ ] is denoted
by R(ts;ts + ) and the simply compounded credit (basis) spread is denotedy
S(ts;ts + ). If tg > 0 these are the simply compounded forward rates. The total
Libor rate applied to the depositis L(ts;ts+ )= R(ts;ts+ )+ S(ts;ts+ )

The credit spread represents a fair default risk premium ovethe risk free rate.
As such, it is calculated in order to equate the discounted epected value of the
risky deposit, under the risk neutral measureQ, (considering both cases of default
during the contract lifetime and survival until maturity) t o:

the unit notional, if ts =0 (i.e.: if the deposit starts today);

the unit notional times the expected survival probability of the counterparty
until ts, E9[1 Fst.+ JFt] if ts > 0 (i.e.: the deposit starts on a future date,
and we weight the notional by the probability that the deposit actually starts,
or that the counterparty survives at the start time).

Let us start by considering a spot starting deposit.

2Clearly, once the deal is struck and the counterparty is know, the exact credit risk borne by the
lender can be di erent from the (average) credit risk of the representative bank.

3It is likely super uous stressing that we adopt a reduced fom approach to default modelling.
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3.1 Spot Credit Spread

The equation to determine the spot credit spreads, assumingecovery of Face Value

(RFV), is: 4
1=EQ DP(©; ) 1+ S(©O; )+ R(; ) =
=PP(0; ) 1+ S(0; )+ R(0; ) SP(0; )+(1 Lgd) PD(0; )=
_ 1+(S(0; )+ R(G; )) (1 Lgd) PD(0; )

SP(0; )+

1+ R(O; ) 1+R(0; )

(2)

We have indicated with DP (t; T) the default risk-free discount factor from T to t,
and with PP (t;T) = E‘_Q_[D D_(t;T)] = Wl)('rt) the price in t of default risk-free
zero-coupon bond expiring inT.

By some simple algebra, we get from (2):

.1 Lgd+R(0; ) PD (0; )
S0 )= - 1 PD(0; ) 3)

If we de ne the adjusted default probability as PD (0; )= PD (0; )=(1 PD (0; )),
then we can rewrite the spread as:

s©O )= Lgd+RO; ) PO ) @)

3.2 Forward Credit Spread

In case of a forward start deposit, the forward credit spread assuming again a
Recovery of Face Value, is derived from the following equiv@nce:

ECML ey ]= E? DP(its+ ) 1+ S(tsits+ )+ R(tsjts+ ) (5)

Working out the expectations:
SP(0;ts)

PD(ts;ts"' ) 1+(S(ts;ts+ )+ R(ts;ts+ ) SP(O;ts+ )+
+(1 Lgd) (SP(0;ts) SP(O;ts+ ))=

_ 1+(S(ts;ts+ )+ R(ts;ts+ )
- 1+R(ts;ts+ )

. (1 Lgd) (SP(0;ts) SP(O;ts+ )
1+ R(ts;ts+ )

SPO;ts+ )+

(6)
In order to solve this equation, de ne the adjusted forward default probability as:
_ EQ[ F>tg] SP(0;ts)

4This analysis is taken form Castagna and Fede [2].

9
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The forward credit spread S(ts;ts + ) is retrieved with some algebra:

SP(0;ts) . _
W(1+R(ts,ts+ ) )= ®)

=1+(S(ts;ts+ )+ R(ts;ts+ )) +(1 Lgd) PD (ts;ts+ )
By expressing the LHS in terms of conditional forward defaul probabilities:

S(ts;ts+ )
1+ R(ts;ts+ )

W(ts;ts + ) R(ts;ts+ ) + Lgd W(ts;ts + )=
Finally, we get:
S(tsts+ )= © Lgd + R(tsite+ ) PD(tsite+ ) (©)

For typical values of interest rates, and relevant Libor tenors (i.e.: 1,3,6 and 12
months), we can safely assume that.gd Lgd + R(ts;ts + ) . The spot and
forward spreads can then be respectively written as:

s ) 9950 ) (10)

and Lad

S(teits+ ) —2-PD (tsits+ ) (1)
Alternatively, if R(ts;ts+ ) is not negligible, we can simply replace the original
Lgd with Lgd = Lgd + R(ts;ts+ ) and considerR(ts;ts+ ) a constant.

3.3 From Credit Spreads to Ois-Libor Basis

We now relax the assumption that the representative bank is &actly the same as a
given bank, and we explicitly consider that it may change ove time, mirroring the
possible Libor panel's changes.

We will introduce three di erent ways to model the modi cati on of the Libor
panel, that will produce three dierent models. We will dwell more on the rst
model, giving an intuitive representation of the panel transition process; the other
two approaches are a variation that can be easily understoo@nce one grasps the
mechanics of the rst one.

3.3.1 Model 1: Stochastic Total Replacement of the Single Re pre-
sentative Bank

Assume we start with a given panel of banks characterised by a&redit risk sum-
marised in the spot Libor-Ois spread curve and referring to he representative bank
at time t = 0. The credit spread curves are determined by the default pobabili-
ties commanded by an intensity process y, as in equation (1). At a future time
> 0 a change in the panel may occur. a new representative bank trs in the
panel, replacing the bank currently entering it. This new bank has a credit quality
determined by the default probabilities originated by another intensity process |,
which starts exactly when the replacement occurs.
The representative bank may change over time due to its credistanding change
(typically a worsening) or default. Any transition implies a reset of the process,

10
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Figure 5: Visual rendering of the replacement process of thébbr panel of banks.

meaning that the new process, referring to the new represeative bank replacing
the old one, will start exactly when the random transition event occurs.

Moving from a one-time to a continuous-time replacement pr@ess, we can gen-
eralise the idea outlined above in a rather straightforwardfashion. Assume that we
are at time t = 0, and that we are interested in determining the Libor forward
spread for a deposit starting ints and expiring in ts + , as indicated in Figure 5.
At time tg the panel will be the one at time 0 with probability wy o(ts); during the
period [0; ts] a continuous replacement process takes place: at each timg, for i > 0,
a new panel can replace the original one, and the probabilitythat this is the panel
existing at the start of the deposit in ts is indicated by wy (ts; i). To each new
panel, corresponding to a given representative bank, is assiated a speci ¢ default
risk, commanded by a default intensity process starting in ;.

Hence, at timetsg, loosely speaking, the representative bank's default proability
will be a weighted average of all the default probabilities & the representative banks
that can form the panel by the time ; on.

It is important to highlight the fact that the deposit counte rparty, i.e.: the
borrower bank, is a speci c member of the interbank populaton that is implicitly
assumed to be an in nity of banks that can replace the defauled, or credit deterio-
rated, banks included in the current and future panels. Wherever there is a credit
standing transition or a default, the current representative agent changes and the
whole population changes accordingly. This transition in awerall population charac-
teristics is equivalent to a replacement of the representate agent with a new kind
of representative agent.

It is assumed that all banks have mutually independent defalt intensity dy-
namics. Therefore, given this assumption of independencend in nite population,
we imply that there will always be a bank (embodied in the representative bank)

11
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to which the Libor rate can be applied when it asks to borrow maey. In other
words, although the Libor panel is made of defaultable entites, the replacement
process (jointly with the above mentioned assumptions) engres that the process
of the Libor-Ois basis never stops, and that there is alwaysa opportunity to lend

money to a Libor bank.

When we monitor the credit risk in a forward starting deposit with a specic
representative bank, we always consider the possibility tht it might go bankrupt
before the contract inception in tg and this will be accounted for in the speci ¢ rep-
resentative bank's credit spread by using the relevant fonard default probabilities.
In case a speci c representative bank defaultsi(e.: the panel stops existing and a
replacement occurs), we will move our monitoring to anotherrepresentative bank
which is independent from the previously monitored one. Gien our assumptions we
can rest assured that we will always nd a new representativebank to monitor.

We will provide in next section the formulae for Forward Libor-Ois basis curves
referring to general version of this model: it allows for a clange in the Libor panel af-
ter a total replacement of the existing representative bankwith a new representative
bank that can be either of type L or H.

Forward Libor-Ois basis curves

Whenever a series of replacement events occurs betweérn= 0 and t = tg, only
the last of these events is relevant, since on every replacemt the previous default
intensity process stops and is replaced by the default intesity process of the new
representative bank replacing the old one. Once the last rdpcement occurs, we can
use the credit spread equations de ned in the beginning of tis section, relating the
basis to the forward default probability under the last extracted process.
Assume the last replacement time is , so that the new default intensity process

starts exactly in . Consider two cases: in the rst the last new bank will be of type
H, in the other it will be of type L. Given the assumption that the functional form of
the intensity process between switching events does not change, we have that the
forward default probability will be simply shifted intimeb y :PD,(ts ;ts + )
(with z 2 f H; L g), where

SP:(0;ts )
SP2(0;ts + )
We also trivially have SP,(ts ;ts + )=1 PD,(ts ;tg + ).

Additionally, denote the conditional credit spread, under the replacement con-
ditions, as Sy (ts  ;ts + )and S (ts ;ts + ) respectively. Making use
of the approximation introduced above, the credit spread is

Lgd ——
S, (ts its + )= =9< PD ,(ts s + ) (13)

PD,(ts ;ts + )= 1 (12)

wherePD ,(ts ;ts + )= SP,(0;ts )=SP,(0;ts + ) 1

So far we showed the calculations for a credit spread condithed on a specic
last replacement event 2 (0;ts). We need to integrate for all the possible 's in
the interval (0;ts), bearing in mind that two last replacement time 's are obviously
mutually exclusive. Therefore, to compute the unconditioral Libor-Ois basis, we
have to consider these three general possibilities:

1. the representative bank is never replaced, therefore weillvcalculate the basis
as the one of the initial bank;

12
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2. the representative bank is replaced at least once and in #last replacement
the new bank is of typeH;

3. the representative bank is replaced at least once and in #nlast replaced the
new bank is of typelL.

The rst case has probability: wy.o(0;ts), and the spread is:
Si(ts;ts+ ) = Wh;o(ts) SH(ts;ts+ ) (14)

The weight wy.0(0; ts), as well as the other weights in the following formulae, are
derived in Appendix A.

In the second case, the spread is calculated by integratingver all admissible 's
the conditional spread S (ts  ;ts + ) multiplied by the probability density
function wyy (ts; ).

Z,
Sots;ts+ ) = o WhH (ts; ) SH(ts  ts + )d (15)
In the third case the spread is calculated similarly to the seond case:
Z,,
Sa(ts;ts+ ) = Whe (ts; ) Si(ts  ts + )d (16)
0

Recall that the probabilities w, ., (t; T) refer to the last replacement fromz; to z,
occurring betweent and T: they implicitly contain also all the possible replacemens
from the two types of representative bank occurring before he last one.

The unconditional forward Libor-Ois basis is simply the sumof the three terms
above, since they are mutually exclusive and they are alreadweighted for their
respective probabilities:

Stivor (ts;ts+ )= Si(ts;ts+ )+ So(ts;ts+ )+ Sa(ts;ts+ ) (17)

Marginal forward Libor-Ois basis p.d.f.

To derive the forward Libor-Ois basis marginal p.d.f., we ned to condition it on:
a certain statez2f H;Lg
last replacement event in 2 (0;ts)
survival until tg

We need to derive the complete density, accounting for all pssible 2 (0;ts). To
this end, consider the three cases:

1. No replacement of the representative agent occurs in (@s)

2. One or more replacements occur in ((s), with a last replacement event in
2 (0O;ts) collapsing in state H

3. One or more replacements occur in (s), with a last replacement event in
2 (0;ts) collapsing in state L

The respective probabilities are:
1. WH;O(ts)
2. WhH (ts; )
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3. W (ts; )
The p.d.f. is:

99(Stibor ;ts; ) = OR(Sits; )+ g2(S;0its; )+ 92(S;ts; ) (18)

where the functions ng(:), gZQ(:) and g:?(:) are given in Appendix A.

3.3.2 Model 2: Stochastic Partial Replacement with Detailed Libor
Panel

In the Model 2 we extend the idea of Model 1 by allowing for a dediled description
of the initial Libor panel. In more detail, assume that the panel is composed byN
banks® They can be both of typeH and L, typically with a mix at the observation
date containing more of the former if Libor-Ois curves are humped.

Each bank in the panel can be replaced by new banks of both tygein the
future; the credit spread of these banks is commanded by an tensity process that
starts at the time the replacing banks enter in the panel. Thereplacement process
is modelled in the same way as Model 1, by a continuous time Mdov chain.

The main dierence between Model 1 and Model 2 is that in the ldter we
consider the actual number of banks entering in the Libor paml, although they
can only be of two types. The modi cations of the panel can ocar for any of
the N banks at random future times, contrarily to Model 1, in which the (one)
representative bank can be replaced at future times by anotlr representative bank,
thus completely renewing the composition of the panel.

Forward Libor-Ois basis curves

If we denote thei member's initial state as z;(0) 2 f H;L g, we have two kinds of
random variables depending org; (0). Each random variable S; will follow dynamics
according to Model 1, with initial state z(0). We divide the panel members in two
subsetsZy = fi  z(0)= Hgand Z, = fi z(0) = Lg. Then the Libor-Ois basis
random variable may be expressed as:

1 X X
Stivor (ts;ts+ ) = N Si(ts;ts + )+ S (ts;ts+ ) (19)
22, i2z4

Denote with Sy, (ts;ts+ ) and Sy, (ts;ts+ ) the value of a forward Libor-
Ois basis calculated according to Model 1 with initial stateH and L respectively.
Suppose that there arem members inZy and N m members inZ, . Thus the
expectation of S_jpor Will be the weighed average of the forward Libor-Ois basis
above de ned:

N m
Stibor (ts;ts+ ) =

m
SmyL(ts;ts+ )+ N SmoH (ts;ts + ) (20)

5At the time of writing, the USD Libor panel is made of 18 banks; the EUR Euribor panel is made of
of 25 banks.
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Marginal forward Libor-Ois basis p.d.f.

To nd out the density of Siipor (ts;ts + ), we need to calculate the p.d.f. of the

following random variable:

1 X X

N Si(ts;ts + ) + Sj(ts;ts+ ) (21)
i2Z, i2Zn

Stibor (ts;ts+ ) =

Suppose that the spread of the banki is independent from the spread of the
bank j for everyi 6 j. The density we are looking at is simply the convolution of
the densitiesSi>z, (ts;ts+ ) and oz, (ts;ts+  )(ts;ts+ ).

Denote with g,\Q,Il;L(S; ts;ts + ) and g,al;H (S;ts;ts + ) the Libor-Ois basis
marginal density according to Model 1, with initial states H and L respectively.
These are the respective p.d.f. folSixz, (ts;ts+ ) and Sjoz,, (ts;ts+ ).

If there are m members inZy and N m members inZ, the marginal density
of the Libor-Ois basis is given by the convolution of two commnents: i) the p.d.f. of
the weighted sum of them members in groupZy and ii) the p.d.f. of the weighted
sum of N m members in groupZ, . Each member is equally weighted byNi.

ngOf (y! tSl tS + ) =
N gﬁl;H (N Sit;ts+ ) N gﬁl;H (N Sitsjts+ )
| @ b o

m

N g[\QAl;L(N Sits;ts + ) N gﬁl;L(N Sits;ts + )
| {z }

N m

where denotes the convolution operator.

3.3.3 Model 3: Continuous Time Deterministic Replacement Pr o-
cess of the Single Representative Bank

The Model 3 for the Libor-Ois basis hinges on the assumptionhat new replacing
representative banks gradually replace the representatie banks entering the initial
Libor panel. So we have two main di erences between Model 1 ahModel 3: i) the

initial panel can be a combination of H and L type banks in Model 3, whereas it
was a panel made by a single type representative bank in Model; ii) in Model 3

the replacement is not total, as in Model 1, but only a fraction of old representative
banks can be replaced by newH and L type banks; nally iii) the replacement

process occurs continuously and in a deterministic fashiorin Model 3, contrarily

to the Markov chain process in Model 1. The technical detailsof the transition

mechanics are in the Appendix B.

Forward Libor-Ois basis curves

The forward Libor-Ois basis Sijpor (ts;ts + ) in this model is the sum of two com-
ponents:

1. the contribution of the initial panel, dampened by the e e ct of the replacement
of new banks, denoted byS;(ts;ts + );
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2. the integral of the contributions of all the new banks that enter the panel in
(0;ts), denoted with Sy(ts;ts+ ).

Denote with S(ts;ts+ ) = Syu(tsits+ ) S_(ts;ts+ ) the vector containing

the H and L single static counterparty forward credit spreads. The rst component

is given by: o

Si(ts;ts+ )= B(0;ts) wo S(ts;ts + ) (23)

where B (0; ts) is the decay matrix, de ned in (85), and wg is the initial Libor panel
composition vector.
The second component is given by:

Zts
Soltsits+ )= '(uits) © S(ts Uity u+ ) du (24)
oo

where' (u;ts) is the new bank weight density vector (with H and L components)
de ned in equation (83).
Finally, the complete forward Libor-Ois basis is given by:

Siibor (ts;ts+ ) = Si(ts;ts+ )+ So(ts;ts+ ) (25)

The formulae for the single components are in the Appendix B.

Marginal forward Libor-Ois basis p.d.f.

Let Sy (ts;ts+ ) pS(SH tsits+ ) and Sy (ts;ts+ ) p S(SL;ts;ts + ), where
p? is the risk neutral marginal p.d.f of a credit spread for a z-type bank, for a
deposit starting in ts and maturing in ts+ . Then:

Si(ts;ts+ ) ng(Sl;ts;ts"' )

1 Si(ts;ts+ )

R(Siitsits+ )= - g 1 S A

O W AR T O AR N CHA IO (26)
1 pQ Si(ts;ts + )'t't +

joL(O;t)wL(0)] "5 b (O;t)wi (0) 0
where denotes the convolution operator.

Then the complete spread has the following p.d.f.:

Stibor (ts;ts+ ) g?(SLibor So(ts;ts+ )itsits+ ) (27)

As explained in Appendix B, Sy(ts;ts + ) has in nitesimal variance and therefore
is a deterministic process. The detailed formula is given imMAppendix B as well.

4 Libor Caplet&Floorlet Valuation with Stochas-
tic Basis

The framework outlined above allows to retrieve the margina densities for the
Libor-Ois basis in each of the three models analysed. It is tén possible, under the
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assumption of the Libor-Ois basis independent from the coresponding Ois rate, the
sum of both being the Libor rate.

Let us start by considering a deterministic and constant addtive spread S: then
a Libor caplet would be equivalent to a caplet on an Ois rate wih adjusted strike
K = K S.Let R(ts;ts+ ) be the forward Ois rate betweents andts+ , observed
at time t. A caplet on Libor rate L(ts;ts+ )= R(ts;ts+ )+ S has a pay-o at
the natural expiry in ts equal to:

Caplet |jpor L(ts;ts+ )iKitsts+ =
=max R(ts;ts+ )+ S K;O0
=max R(ts;ts+ ) (K S(tsits+ ));0 =
= Caplet gis R(ts;ts+ );K  S;ts;ts+

At time t, the caplet is worth Caplet ;s R(ts;ts+ );K  S;ts;ts + and can
be computed by any available model commonly adopted in pradte, e.g.: a Black
formula.

If we consider a stochastic credit spread and assume its ingendence from Ois
rates, we can simply evaluate the Libor caplet as the Ois capit above conditioned
on all admissible values ofS. We may then express the value of a Libor caplet as the
convolution between the Ois caplet (as a function of the strke K') and the marginal
basis densityg?(S;ts;ts + ), whose explicit formula is given for each of the three
models:

Caplet |jpor L(ts;ts+ );Kitsits+ =

= Caplet g R(tsits+ )iKitsits+ P(Ktsits+ )=
+1

= Caplet ois R(ts;ts+ );K  S;ts;ts+ g?(S;ts;ts+ ) dS
1

(28)

where indicates the convolution operator, setting as the convoltion domain K 2
R.

5 A Specication of the Model with CIR In-
tensity Dynamics

As we have mentioned above, the framework we have sketched modular, in the
sense that, under the stated assumptions, we can choose anyrhmics for the
intensity processes forH - and L-type banks, and thus specify the Models 1, 2 or 3
we have analysed above for the Libor-Ois basis.

Besides, we can choose any dynamics for the (risk-free) Oiate and then come
up with a full speci cation for the Libor rate dynamics that w ill allow for the
valuation of Libor derivatives, including caps& oors and swaptions.’

6Similar general formulae are given also in Mercurio [4].

"We have not studied the evaluation of swaptions in this work, but it is possible in the outlined
framework.
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In what follows we will specify the default intensity dynamics as CIR processés
and we will show the basis curve it is possible to obtain by thethree models of
Libor-Ois basis.

5.1 Forward Credit Spreads

Assume a bank of typez can go defaulted according to a jump process commanded
by an intensity whose dynamics - under the risk neutral measte Q - follows a CIR
process of the type:

d,0= (2 20) d+ 5 20 dwd (29)

wherez 2 f H;L g is a label variable indicating whether the counterparty is o the
H or L type (high or low credit risk respectively). The initial con dition is ;(0).
Since the CIR process belongs to the a ne exponential family forward credit
spreads may be explicitly derived. Given the survival probdoility:
z t
SP;(0;t)= E exp (u)du = Az(0;t)exp B2(0;t) 2(0) (30)
0

= p‘g+ 2 2 (31)
4 zZ Z
z = 22 (32)
. 2,02+ NS T)=2] 7
A9 = 5+ deels D D 9
: _ 2(exp[(S T) 1)
09 = 3 e Dewlas T D 9
(35)
the forward credit spreads is:
S;(ts;ts+ ) = & W(ts;ts"' )
_ Lgd A;(0;ts)exp Bz(0;ts) 2(0) (36)

Az(0;ts+ )exp B.(0;ts+ ) 2(0)

Practical Examples

Having speci ed the dynamics of the intensity (t) as a CIR process, we are now able
show the time structures for the Libor-Ois basis generated whin our framework.
The aim of all the models is to accurately reproduce the humpe shape of the real
data (see Figure 1): it means that our model is designed to be exible enough to
reproduce the hump in a realistic time interval, to match the slope of the time
structure and to replicate the spot (deposits') Libor-Ois basis.

Assume we set the parameters of the CIR intensity process fothe H and L
type banks, in each of the 3 models, as shown in the table 2. Weaa then check

8See Cox, Ingersoll and Ross [3].
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Maturity | 1M 3M 6M 1y

0 0.81% 0.83% 0.86% 0.90%
1 0.96% 0.96% 0.97% 0.98%
3 1.00% 1.00% 1.00% 1.00%
5 1.00% 1.00% 1.00% 1.00%
7 1.00% 1.00% 1.00% 1.00%
10 1.00% 1.00% 1.00% 1.00%
15 1.00% 1.00% 1.00% 1.00%
20 1.00% 1.00% 1.00% 1.00%
25 1.00% 1.00% 1.00% 1.00%
30 1.00% 1.00% 1.00% 1.00%

Table 1: Ois rates. The underlying short rate follows a CIR mrcess withry = 0:80%,
Ois — 1:5, Ois — 1:00% and Ois — 5:00%

CIR Parameters Replacement Parameters

L QHH aHL  AH aL

0

H 0.06% 10 18% 1.0% . . .
Model 1 " icoe o5 oot Lovd 02 4 60% 40% 0%  100%
H 010% 1.0 25% 1.0% . o o .
Model 2 " [ocoe 03 o040t Lovd 02 4 50% 50% 0% 100%
H 0.06% 10 18% 1.0%
Model 3 " 0ol o5 050t 1_00/j 02 4 60% 40% 0% 100%

Table 2: Parameters for models with constant replacement

which type of shapes for the Libor-Ois basis term structure he 3 models generate.
Moreover, we test also the exibility of the model by introdu cing time dependent
parameters in the transition processes and in the exit intesity from the panel.

The starting Ois rates' term structure is also needed: we geerate a curve by a
CIR model for the short rate whose parameters are chosen sudhat they t best
the market quotes dealing on November %, 2014. In table 1 we show the term
structures of the forward Ois for the 1M, 3M, 6M and 1Y tenor.

The results are shown in gures 6a, 6¢c and 6e, where we used xieparameters
for the exit intensity from the panel and for the transition d ynamics speci ¢ to each
model. Note that in the Model 2 (Stochastic Partial Replacenent with Detailed
Libor Panel) we considered a panel of 25 banks, such that 15 atted as H type.
Moreover, in the Model 3 (Continuous Time Deterministic Replacement Process of
the Single Representative Bank) we chose a starting panel ¢irely composed ofH
type banks, that is wy (0) = 1 and wy (0) =0.

In gure 6b, 6d and 6f we show the Libor-Ois basis term structue when allowing
for time dependent parameters of the panel exit intensity arl transition dynamics.
The most accurate model seems to be the second one, that is thheodel with stochas-
tic partial replacement with detailed Libor Panel. As a matt er of fact, such a time
structure does not su er the initial spike and moreover the hump correctly cover
the interval between spot date and 10-ish years, switchingrbm a concave to convex

slope.

19

eiason




(a) Model 1 - constant parameters  (b) Model 1 - Time Variant Parameters

080% 050%
—am 045% —m
4% N e M
035% ———6m
030% ’ S v
Foasw o emmmeen
@ ' . S
020%
015%

0.10%

005%

0.00% 0.00%

(e) Model 3 - Constant Parameters  (f) Model 3 - Time Variant Parameters

Figure 6: An example of forward basis curve with constant andrhe variant parameters.

5.2 Credit Spread Marginal p.d.f.

Given a CIR specication for the dynamics of ,(t), we wish to calculate the
marginal p.d.f. of the credit spread S, (ts;ts+ ), which is indicated asp?(sz; ts;ts+

).
Since Sy(ts;ts + )= L4 % 1 , if we de ne the random variable
= %, we may equivalently say that the relationship betweenS; (ts;ts+ )
and x is; Lad .
Sitsits+ )= = © 1 37)

Note that the previous relation is a deterministic, inverti ble and di erentiable func-
tion. So, if we calculate the risk-neutral marginal p.d.f. d x rst, which we will
denote assz(x;ts;tS + ), we are able to deduce from it p(zg(SZ;ts;tS + ). The
details are explained the Appendix A. The CIR process belong to the A ne Ex-
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ponential Family, therefore the random variable:
Z,.,

$P,(ts;ts+ )= EQ exp LAu)du Fy =
ts

= A(ts;ts+ ) exp B(ts;ts+ ) 2(ts)

may be expressed in terms of the ,(ts) random variable.

Since we wish to derive the p.d.f. ofx, which is a ratio of survival probabilities,
let us de ne G's the probability measure associated with the numeraireEfSP(O; ts).
The associated Radon-Nikodym derivative is:

1

de—ts(‘s) =1

Using conditional expectations:

fR(X) dx = E 1gp,(teter )2(xx+dx) Fis

dQ
= EGts lSPz(ts;ts+ )2 (x;x +d X) dG_tS Fts

(39)

therefore to obtain our result we may equivalently switch from Q to the G, measure.
Letv t tgand de ne these auxiliary functions:

— Z+ z
z = 2
z
g(tv) = 2 [t v)+ 2+ Bz(tts)]
. _ 4 (Lt ) (9 etV
Under the forward measureG's, the distribution of ,(t) conditional on (V) is
given by:
Z(t)] Z(V)(X) = (V) P2 Ly (s (R(EV) X) (40)

wherep 2. y(x) denotes the marginal p.d.f. of a Non-Central Chi-Squared andom
variable with  degrees of freedom and non-centrality parameter.
Given the G's p.d.f. of ,(ts), by inverting this relation we are able to derive the

p.d.f. of A (ts;ts+ )exp  By(ts;ts+ ) 2(ts) under Gts. Setx = &P, (ts;ts+ ).

_ 1 Az(ts;ts+ )
This is an invertible and di erentiable function of Xx. Its rst derivative is:
t 1
d 2(ts) _ (42)

dx B, (ts;ts+ ) X

Using the classical probability result for the p.d.f. of an invertible and di eren-
tiable function of a random variable:

d (ts)
dx

sz(X;ts;ts+ )= G (ts;v) p 2(; 2(tsv)) G (ts; V)  2(ts) (43)
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We nally get:

fRxtsits+ )=
1 1 Aytsits+ )

(44)

Once we havesz( ), we are able to calculate the p.d.f. of the credit spread|c§g
according to (37)

f2 ( S)its)ts+

d 2
k aotl

p(zg(S;ts;ts"' ) = L (45)

This formula is explained in details in the appendix (see (72. We are now able
to make it speci ¢ to any of the 3 models:

1. for the rst model the p.d.f. is given by the formula (76) in the appendix;

2. once we have the p.d.f. for the rst model, we easily deducé¢he p.d.f. for the
second model applying (22);

3. the p.d.f. for the third model is explicitly shown in (103) and (104).

Practical Examples

Given the densities for each model, the Libor Caplet will be aconsequence of equa-
tion (28). We use the same data for the Ois rates and the Libo©is basis as above.
For the Ois forward rates we also assume that they are lognorally distributed
with one constant volatility set at 30%. Please note that we $ould have used a
CIR model for the Ois rates also to evaluate caplets, to be caistent with the way
we generated the Ois forward curves. Nonetheless, the purge of this section is to
isolate the impact on the volatility smile of the Libor-Ois b asis models we have de-
scribed above. For the same reason, we compare also the valay smiles produced
by the Libor-Ois models with the smile generated by a simply dsplaced Lognormal
model, with displacement set equal to the relevant forward libor-Ois basis, assumed
to be constant.

We are then able to calculate the implied volatility for each of the models as
shown in 7 and 8 for the 6M tenor. Implied volatility smiles and implied volatility
surface for other tenors (1M, 3M, 1Y) are shown in appendix C.

We are also able to plot the p.d.f. for each model and for eachenor. Figure 9
shows the p.d.f. for the 6M tenor at di erent maturities for a Il the models. The other
tenors present almost identical shapes, by di ering from the 6M only for the center
of the peaks, since each tenor's p.d.f. is centered on its owforward rate. With
the chosen set of parameters, the p.d.f. of the third model irplies a practically nil
volatility. The other distribution for the other two models , both in the constant and
time variant parameters, are multi-modal, due to the replacement mechanism.
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Figure 7: Volatility smiles for a caplet with expiry 10 yearsand tenor 6M. Ois rate is
modelled by Black model with implied volatility equal to 30%
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() Model 1 - Constant parameters (b) Model 1 - Time Variant parameters
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Figure 8: An example of volatility surfaces for a caplet with xpiry 10 years and tenor
6M. Ois rate is modelled by Black model with implied volatily equal to 30%.

24

eiason




() Model 1 - Constant parameters (b) Model 1 - Time Variant parameters

(c) Model 2 - Constant parameters (d) Model 2 - Time Variant parameters

(e) Model 3 - Constant parameters (f) Model 3 - Time Variant parameters

Figure 9: P.d.f. for Libor-Ois basis refering to 6M tenor
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6 Conclusions

In the present paper we provided a framework that is based emtely on micro-
founded inference and credit risk arguments: all of the assuaptions, dynamics and
parameters derive from considerations on how market practioners typically deal
with the Libor-Ois basis.

The framework is exible enough to capture the features of the Libor-Ois basis
guoted on the market. In fact it would be able to reproduce a boad variety of
complex basis term structures given the right time structure for the replacement
parameters. We consider such a feature one of the strengthd our setup. Since the
replacement parameters in our models have a straightforwat interpretation, they
provide also a simple tool to analyze and interpret Libor-Ob basis expectations
implied in market quotes.

Furthermore, the present framework addresses the issue ofarket illiquidity for
some regions of the term structure. In fact, in most cases awable market quotes
are not su cient to cover the whole Libor-Ois basis term stru cture for a given tenor:
practitioners can use our framework to deduce the illiquid m@rts of the curves for
all tenors from the quotes of actively traded instruments. In our practical examples,
the liquid 3M and 6M indexed instruments were su cient to rep roduce the entire
set of curves.

We noticed a rather high probability of replacement of the Libor panel: this
is likely due to the fact that not actively traded assets enteed in the calibration
process. This factor leads to high replacement intensity, Wich in turn leads to small
volatility for Libor-Ois basis distributions.

If we consider only actively traded instruments, we suspecthat reasonable re-
placement parameters will be su cient for calibration. Our framework could then
be used to provide a more suitable interpolation and extraptation method for the
entire Libor-Ois basis term structure.
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A Model 1: Technical Detalls
A.1 The Transition Density

We have introduced above the concept of representative bark this concept makes
unnecessary to model each single Libor member's default iehsity dynamics, thus
simplifying the modelling process restricting the analyss the default intensity of

the representative banks. This representative agent is ckrly not default risk free,

in fact its default is modelled by a (possibly stochastic) déault intensity.

There might be more than one transition event occurring in the future, but
since each of these events implies a process reset, we arechasted only in the last
transition event and its subsequent new process for the detdt intensity. The repre-
sentative bank replacement is a Markov continuous time stokastic process, with two
statesf H; L g and an instantaneous Markov transition matrix A (t) 2 R?> 2. When-
ever a transition event is extracted in a future time > 0, the new representative
bank (which in general may be eitherH or L, with probabilities derived from A (1)),
replaces the previous representative bank completelyhe switching event process is
independent from the Ois rate dynamics and all of the possil@ , processes.

Let z 2 f H; L g. The representative bank has instantaneous replacement pba-
bilities that depend on its current state, enclosed in the irstantaneous replacement
matrix A (t), de ned as:

_am () an®
AM= L0 an® (46)

The A (t) matrix is deterministic and it includes all the possibilit ies in which the
representative bank is replaced by a new representative agg but it doesn't include
the possibility that no replacement takes place.

More speci cally, we de ne:

apn (t) dt : probability that in ( t;t +dt) the current H bank is replaced by
a newH bank

ary (t) dt: probability that in ( t;t +dt) the current L bank is replaced by a
new H bank

ay (t) dt : probability that in ( t;t +dt) the current H bank is replaced by a
new L bank

a_. (t) dt: probability that in ( t;t +dt) the current L bank is replaced by a
new L bank.

The instantaneous A (t) matrix may be decomposed in two matrices,A (t) and

A(t).

Ay H(®) O
_ A (1) Ay (1)
A= B ® (48)
A= A1) (1) (49)

with y(t) 0, L(t) O 8uu () +Bu (1) =1, an () +a (1) =1
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Intuitively, 4 (t) and | (t) are the hazard rates of the inhomogeneous Poisson
processes driving the replacement events fdd and L respectively, while A (t) con-
tains the probabilities of HH , HL , LH and LL transitions once a replacement event
is extracted from the Poisson processes di and L.

In order to consider the possibility that the current bank is not replaced in
(t;t +dt), we de ne the instantaneous stability matrix B (t) as:

_ (ann () + an (1) 0
B (t) - " 0 " (a|_|_ (t) + aH (t)) (50)

This matrix includes the possibility of no replacement, depending on its current
state (H or L). Finally, we de ne the instantaneous transition matrix C(t) asC(t) =

A (t) + B (t), which includes both the possibility of replacement and noreplacement
taking place:

_ apL (1)  awn (1)
ct)= apL (1) acn (1) (1)

De ne
py (t) as the probability of having a type H representative bank at timet  0;

p. (t) as the probability of having a type L representative bank at timet O:
obviously we have thatp_ (t)+ py(t)=1 8t O;

p(t) as the vector (py (1); pL (1)).
At the initial time t =0, the representative bank is in stateH, i.e.: py(0) =1 and

pL(0) = 0.
The instantaneous transition dynamics are described by thefollowing equation:
dp(t
PO = copw 52
The solution of this O.D.E., given the initial condition, is :
YA t
p(t) = exp . C(u)du p(0) (53)

where we use a matrix exponential, de ned as:

X1 M K
exp M = W (54)
k=0
where M © = |, the identity matrix.

Although its calculation might seem cumbersome at rst, we can simplify it by
expressing it in terms of the eigenvalues; and , and eigenvectors oM (i.e. diago-
nalizing or triangulating it). If 1 and » are distinct, M is surely diagonalizable. Let
V indicate the diagonalization (or triangulation, if diagon alization is not possible)
base.

Mm=wvmy t= 10O
0 »

Using basic linear algebra properties, this matrix exponetial is simply rewritten as:

1
M=y LMy =yt & 0y
0 ez
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If 1= »>= , M may not be always diagonalized, but we can always nd out

the Jordan matrix:

1
— 1_
M = VMV = 0

In this case, the matrix exponential may be rewritten as:

M=v i v=yv 1% ® vy
0 e
If we want to derive the probability of no replacement taking place in the interval

(0;ts) we have to solve the following O.D.E.

d t
PuR (D) = B (pue (1) (55
with initial condition pngr (0) = p(0). The solution of this O.D.E., given the initial
condition, is: 7
t
PNR (L) = exp B (u)du p(0) (56)
0

We remind that B is diagonal by construction and therefore the matrix exponatial
calculation is straightforward:
VA t
exp B(udu =
0 ° R 1
exp o ann (U)+ anL (u) du 0

R
0 exp o an (u)+ ay (u) du
(57)
Now let us de ne wyy (ts; ) , with 0 < <t g, as the probability density
function at time ts of having a H bank with last entrance instant located in the

interval ( ; +d ); moreover, let us de ne wy, (ts; ) as the analogous probability
as before, but collapsing in aL bank instead: we group both in a vectorwy (ts; ):

W(ts; ) = (Whn (ts; )iwhe (ts; ) (58)
In order to derive the equation that de nes this vector, we make use of the following
argument: suppose the bank at a certain instant is either in a state H or L. We
R
apply the integrated transition matrix exp  , C(u)du to the initial state vector

p(0) to derive the probability of transition to that state; th en we suppose that a
replacement takes place in ( +d ). We multiply the previous result by A( ) d
and nally, since we assumed this was the last replacement tang place, we multiply

R
the result by the integrated stability matrix exp t B(u)du .

z z
ts 1

Whh (ts; ) _
Wi (te: ) d =exp B(u)du A( )exp . C(uwdu 0 d (59)

All the 2 (0;ts) are possible and admissible, therefore we can integrate ev the
whole (G; ts) interval, as we will later actually do.
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We have to keep in mind that there is also the possibility that no replacement
takes place in the entire (Qts) interval, the probability of which is given by:
Z,

Wh.o(ts) = 1 0 exp B (u)du

1
. 0 (60)

Remark A.1. The weights always integrate to one. To see that consider thiel-
lowing chain of equalities

z, z
w(t; )=exp B(udu A( )exp C(u)du wgq =
Z, ° z
= exp B(udu C() B() exp C(u)du wg = 61)
0
R R
@ exp B(u)du exp , C(u)du
= w
@ 0
therefore:
VA t Z t VA t
w(t; )d = exp C(uwdu exp B(u)du wyg (62)
0 0 0
and nally:
Z t Z t Z t
w(t; )d +exp B(u)du wg =exp C(u)du wg (63)
0 0 0

R
Since exp SC(u)du is a Markov Matrix, and since wy.o + wi.o = 1, the

resulting nal weights will surely add up to one.

A.2 Marginal Libor-Ois Basis P.D.F.

Between replacement events, the Libor-Ois basis p.d.f. isigen simply by shifting
the credit spread p.d.f. in time by the last replacement time and choosingH or L
default intensity parameters depending on its current stae z. This means that the
p.d.f. is conditional on a speci c last replacement event in :pS(S;tS its + )

andpS(S;ts it + )for H andL states respectively (wherep? is the marginal
p.d.f of a credit spread for az-type bank, for a deposit starting in ts and maturing
ints+ ).

In order to derive the forward spread p.d.f., we need to condion it on:

a certain statez2f H;Lg
last replacement event in 2 (0;ts)
survival until tg

Given a SDE speci cation for , the probability density function of x is:
Z
x;, = EQ1 exp J(udu  Fy, (64)

F>ts ts

Xtq foxts  ts  + ) (65)
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We need to derive an expression foerQ(x;tS it + ). In order to do
so, we premise some mathematical technicalities. Supposadeed that a random
variable x is distributed according to a marginal p.d.f. a(x). Suppose that another
random variable y is related to x by a deterministic, invertible and di erentiable
relationship, i.e. y = b(x) and x =b (y). We wish to calculate the marginal p.d.f.
ofy, c(y).

1
Py2(yy+dy) =P x2 b y):b (y)+ dbdy(y) dy
db !
o) dy=a b i) T oy (66)
db (y)
— 1
cy)=a b “(y) dy
De ne o
$P(tT)= EQ[ F>tjF]=EQ e « Wdup, (67)
and .
BD(;T)= — 68
() $P(t;T) (68)
The spreadS;(t;ts ;ts + )is dened as:
S:(ts ts + )= 7Lgd BD ,(ts;ts+ )= 7Lgd % 1 (69)

Given the p.d.f. of x, sz(x), we need to derive the p.d.f. ofS, denoted byp?; we
rst invert the relationship between x and S:

1
x=( 8= ——— (70)
Tgd S+1

and then apply the classical probability result to obtain a p.d.f. of an invertible
function of the S variable:

d
pR(S;ts;ts+ )= s f(x;ts;ts+ ) (71)

Wherep? is the risk neutral marginal p.d.f of a credit spread for az-type bank, for
a deposit starting in ts and maturing in ts+ . We nally obtain:

f2(( S)its;ts+ )

2
Lg—ds+1

PR(Sitsits + )= ¢ (72)

gd

Equation (72) gives the p.d.f. of S(ts ;ts + )= 298D, (ts ;ts + )
between switching events. This p.d.f. is conditional on a spci c last replacement
event in :pS(S;tS its + )andpS(S;tS its + )for H and L states
respectively. We need to derive the complete density, accaiing for all possible

2 (0;tg). To this end, in analogy with 3.3.1, consider the three casg

1. No replacement of the representative agent occurs in (@s)
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2. One or more replacements occur in (), with a last replacement event in
2 (0O;ts) collapsing in state H

3. One or more replacements occur in (Os), with a last replacement event in
2 (0;ts) collapsing in state L
The respective probabilities are:
1. wy:o(ts)
2. Why (ts; )
3. W (ts; )
For each of these cases, we will derive the p.d.f. fdB(ts;ts ).

Case 1 |Initially, the representative agent is of type H, therefore the initial
density is:pS(S; ts;ts+ ). We multiply this density by the probability of remaining
in the initial state until tg:

02(Sitsits+ )= Whiolts) PR(Sitsits+ ) (73)

Case 2 The conditional density in this case ispS (S;ts ;ts  + ). This,ifwe
assume a specic 2 (0;ts). The weighted density iswyy (ts; )pr(S;ts  ;tst ).
Then, we have to integrate for all possible replacement evéa 2 (0;ts).

Z,
g (Sitsits+ )= whn(tsi ) PR(Sits it + )d (74)

Case 3 The conditional density in this case isp2(S;ts ;ts + ). This, if

we assume a specic 2 (0;ts). The weighted density iswy (ts; ) p(S;ts ;).
Then, we have to integrate for all possible replacement evéa 2 (0;ts).
Z,
B (Sitsitst )= wills ) PRSI its + )d (75)

Complete result  Adding up these three terms we get the rst part of the
spread density:

R(Sitsits+ )= g2(Sits;ts+ )+ g2(S;0ts;ts+ )+ g3(Sits;ts+ ) (76)

A.3 Conditional Libor-Ois Basis P.D.F.

In order to derive the conditional basis p.d.f. for this modd, we need to know more
than the current Libor-Ois basis S. Therefore, denote the state variablev as:

v= S;z; whereS2R;,z2f0;1g f 0;1gand 2 Ry

z:.fH;Lg!f 0;1g f 0;1gis a function that maps state H in 1;0 and state
Lin O1.

z2H)= 1,0
z2L)= 01

Given two time 0 <t <t,, we would like to express the multivariate conditional
p.d.f. of v(t2) as a function of v(t1).
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As a prerequisite, we need the conditional p.d.f. ofu = 2 . Since the re-
placement dynamics are independent from the other dynamigsthis is a relatively
straightforward task. First of all, we calculate the probabilities of:

1. having no replacement events inf(;ts]
Z,,
P o>ty =2(t)= 2(t1)=2z1 =29 exp B(u)du z1 (77)

t1

2. having at least one replacement event in t(; t2], with last replacement time
2 2 (t1;t2], and with previous last replacement time 1 2 (0;t;]. Notice how
this calculation does not depend on 3

P (t)2(2+d 2) 2z(t2)=2z2; 2(t1)= z1; (t1)= 1 =
Z,, zZ (78)
= 79 exp B(u)du A( 2) exp C(u)du zd >

2 t1

Let p?(Sz; Si;t1;to; ) be the risk neutral conditioned marginal p.d.f of a credit
spreadS; for a z-type bank, given the value of the spread int4, for a deposit starting
in t> and expiring t> + . The respective Libor-Ois basis conditional p.d.f.'s are:

1.
h? SxSuzizitaty 11 =p2 SpuSuti ntz 1 (79)

hg SoiSuzaizitaty 20 1 =P SxuSuGty o (80)

Combining the previous steps, the nal Libor-Ois basis condtional p.d.f.'s for
each case are:

1,
o S»Siziizitats 1) 1
th (81)
=z} exp B(udu 2z h$ Sp;Si;71;755t0ts; 1
t1
2,
o? S»Sizzitats 1 1 =
th z 2
= 29 exp B(u)du A( 2) exp C(u)du
2 t1
21 hY S5:S120,715t0it1; 25 1 (82)
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B Model 3: Technical Details
B.1 The Transition Density

We derive the transition density for the Model 3. Let

W (t)

W = w (t)

be the vector whose elements represent the fraction of bankd and L in the panel.
Obviously wy (t) + wi (t) =1 and

_ wu(0)

wO= o)
Denote with )
N TN (T

the density function that de nes the fraction of banks in the panel that enters in the
panel in [u; u+ du] and remains in the panel until t. Moreover we have the following
trivial conditions on ' (u;t): ' (u;t) = O foreveryt<u,' (u;t)= O foreveryt< 0
and ' (u;t) =0 for every u< 0.

Every partition in the panel changes according to an inhomogneous exponential
decay process, thus in every in nitesimal time interval [t;t + dt] a fraction (t) of a
speci ¢ slot leaves the panel (to be replaced by new banks). énote withz 2f H;L g
a variable indicating the type of representative agent. Thepanel's partition occupied
by banks of type z that entered in time O <u t decays according to the following
equation: 7

t
b, (u;t) = exp z(Vv) dv (84)

u

De ne the B (u;t) matrix as:

by (u;t) 0

B(uiH)= 0 b (u;t)

(85)
In order to understand the dynamic of entries and exits, de ne (u) as the \entry"

density, i.e.: a function of time that returns the in nitesimal fraction o f new banks
that entered exactly in the interval (u;u + du), measuredexactly in that interval,
since fort > u it will decrease exponentially due to further replacements Then:

L) = B(ut) (u) (86)

Note that (u) =lim ¢ ' (u;t), the fraction of banks entered at time u observed at
the same timeu. Heuristically this limit guarantees that the system is conservative,
i.e. the sum of the fractions ofH and L in the panel is constant to 1.

Whenever an in nitesimal fraction of a partition leaves the panel, it is replaced
by fraction of new representative banks that may be of typeH or L. The turnover
of banks in the panel at a time instant t is modelled with the matrix

_ apn (1) an (1)
AD= 0 an (87)
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If this fraction being replaced is of typeH , a part of it equal to ayy will be replaced
by H banks, and the remaining part, equal toay. =1 apn, by a newL bank
Similarly, if the fraction being replaced is of type L , a part of it equal to a4 will be
replaced by a newH bank and the remaining part, equaltoa;, =1 ay,byanew
L bank. The elementsA (t) are fractions, not probabilities. If we interpreted them
as probabilities, then' (u;t) would be a stochastic process itself, and the formulas
that follow would determine only its expected value.
De ne the replacement matrix A (t) as:

Cam () awm @
AM= L0 an® (88)

where the matrix elements can be a deterministic function oftime. Whenever a
partition of banks leaves the panel, the new banks that replae them are picked
from the population of banks which are not panel members yet.

Consider a speci ¢ panel's partition that entered the panelin the in nitesimal
interval [u;u + du). De ne the instantaneous amount by which this slot decreags
as the following function of time:

z t
c(u;t) =exp (V) dv zit (89)
u
forz2fH;Lg.
De ne the matrix C(u;t) as:
- cr(ut) 0
C(u;t) = 0 oL(u:t) (90)

Since the panel is conservative, and the fractions of panelsdd up to one at any
time, we have that the fraction of banks that entered in [u;u + d u) is given by the
sum of the amounts by which the previous banks decreased. If ivere not so, the
panel population would not remain constant, it would either decrease to zero or
increase inde nitely.

Then we may derive the following recursive integral equation for (u):

Z

u

(u)= A(u)C(0;u)w(0) + A(u)C(v;u) (v)dv (91)
0

The rst term in the right-hand side of the equation is the contribution to  (u)
given by the replacement of what is left of the initial H-type panel. The second
term is the integral of the contributions from the replacement of what is left of all
the new banks that entered before our current bank, that is in(0; u).

This equation is unpractical to solve. Luckily, there is a smpler way to obtain an
explicit expression for (u). Consider the variablew(u) = wy (u) wyg(u) denoting
the percentage ofH and L banks in the panel at time u (without any information
on when each single fraction of new representative banks ested). w(u) obeys a
simple di erential equation:

WA 1w 92)
du
whose solution is given by a matrix exponential multiplied by the initial condition:
Z u
w(u) = exp A) | (v)dv w(0) (93)
0
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Now, every instantaneous variation inw(u) is given by two terms: the entry of
new representative banks inu and the exit of previously entered banks, and of what
is left of the initial panel.

W wwwr (94

Therefore (u) is simply obtained by the following equation:

=M w =
= A) W)

(95)

B.2 Marginal Libor-Ois Basis P.D.F.

Given the preliminary analysis provided for the Model 1 in the Appendix A, we can
consider the stochastic variable Libor-Ois basis as the sunof the two components
derived above: the rst is the weighted spread of the initial panel, the second is the
integral weighted average of the spreads of the new entrie®ft > 0.

Stivor (ts;ts+ )= Si(ts;ts+ )+ Sy(ts;ts+ ) (96)
where
Si(ts;ts+ )= by (O;ts) Su(ts;ts+ )+ b (0;ts) Sp(ts;ts+ ):

and the weights are given in the section B.1 of this appendixWe will now prove
that, given our deterministic weighting, the second compomnt (Sx(ts;ts + )) has
Zero integrated variance.

Denote the unweighted variance of a single new bank of type 2 f H; L g, which
entered the panel in O<u t, with 2(ts u;ts u+ ). The weight of this bank
is' z(u;t) dt, de ned above. With some abuse of notation, we notice that:

Z t
var Q Sy(ts;ts+ ) = "a(uit) du? B(ts uits u+ )+
z, ° (97)
+ CL(uit) du ? 2(ts uts u+ )
0

Considering that:
The weight density' ;(u;t) for H and L is always nite:

0<' ;(ut) < +1 8t (98)

The integrated weights of the newH and L banks, plus what is left of the
initial panel, always add up to one:
Z t Z t
"h(uit) du+ ' (ust) du+
z, ° z,
+ WH.0 exp H(u) du + w0 exp L(u) du
0 0

0
(99)

=1 8t
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The variance for every single newH and L bank is always nite:
0< 2(tg;ts+ )< +1 8t (100)

the integrand contains a second order in nitesimal, ' ;(u;t) du 2, which
integrates to zero,

then the integrated variance will be zero for every futuret. Therefore we can consider
S)(ts;ts + ) as a deterministic function of time and equal to Sy(ts;ts + ), which
is nite and not negligible:
So(ts;ts+ ) =
Z t VA t
= "nut) Su(ts uts u+ ) du+ "(ut) S(ts uits u+ ) du
0

0
(101)

The spread associated to the initial panel,Si(ts;ts + ), has non-zero variance for
nite t> 0, and it is weighted by by (O; ts).

Denote with S(ts;ts+ )= Sy(ts;ts+ ); S (ts;ts+ ) the vector containing
single static counterparty forward credit spreads. Given ar assumption of indepen-
dence betweenSy and S, the variance-covariance matrix is diagonal:

Q sty =
var~ S(ts;ts+ ) = 0 var Q S (ts;ts+ )

Considering that the initial single spreads are dampened bythe deterministic
replacement process, then we have that:

var Siipor (ts;ts+ ) =
(102)
= w) BYO;ts) var® S(ts;ts+ ) B(0;ts) wo

In order to calculate the marginal p.d.f. of S_jpor (ts;ts + ), we simply have to
calculate the marginal p.d.f. of S1, and then shift it by an amount equal to S,, since
we have shown thatS; is actually a deterministic variable.

Now, Si(ts;ts+ )is alinear combination of Sy (ts; ts+ ) and S (ts;ts+ ), which
are independent. As with any linear combination of indepen@nt random variables,
its marginal p.d.f. is obtained as follows. The weights of ths linear combination are
wy (0) by (O;ts) and wi (0) by (O;ts). To obtain the marginal p.d.f. of Si(ts;ts+ ),
transform the marginal p.d.f.'s of Sy (ts;ts+ ) and S (ts;ts+ ) according to their
respective weights and then convolve them. Results are delaped as follows. If
Sh(ts;its+ ) p S(SH tsits+ )and Sy (ts;ts+ ) p S(SL;ts;ts + ), then:

Si(ts;ts + ) g?(sl;ts;ts"' )
where
1 pQ Si(ts;ts + ) et
ibi (0;ts)wi (0) ~ M by (O;ts)wh (0) " °

1 pQ Si(ts;ts + )"["[ +
jbLO;twi (0)j - bL(0st)w (0)'

0R(Siitsits+ ) =

(103)
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where denotes the convolution operator. Then the complete spreadas the fol-
lowing p.d.f.:

Stibor (ts;ts+ ) ng S(ts;ts + Juibor  So(ts;ts+ )itsits + (104)

since, as previously stated Sy(ts;ts+ ) is a deterministic shift to be applied to
the marginal p.d.f. of S;.

B.3 Conditional Libor-Ois P.D.F.

Since in this model variant the integral of spreads from new knks follows a deter-
ministic process, we can derive the overall spread conditimal p.d.f. through simple
transformations and shifts of the p.d.f. of Si(ts;ts+ ). Let us then derive the con-
ditional p.d.f. of Si(ts;ts+ ). Given a future time t, with 0 <t <t g, we need to
condition on two variables: Sy (t;ts;ts+ ) and S (t;ts;ts+ ), which are respectively
the H and L spreads of the initial panel

P Si(tits;ts+ )2 (X;x +dX) Sh(tits;ts+ )= Yu;SL(tts;ts+ )=y =

-t P ;X;t;ts;ts‘k Y H
wi (0)by (0;t) "M wy (0)by (0;1)

S B e A
w (0)bL(0;t) " wi (0)b(0;1)

(105)

where indicates the convolution operator. SinceS; is actually a deterministic
variable, we can calculate the conditional p.d.f. ofSjpor (ts;ts+ ) simply by shifting

by S, the conditional p.d.f. of S;, obtained in the previous equation. Denotex =
X  Sy(ts;ts+ ), then

P Slibor (its;ts+ )2 (x;x +dX) Sy (t;ts;ts+ )= yu;SL(ts;ts+ )=y, =
P Si(tits;ts+ )2 (x ;x+dx ) Su(tts;its+ )= yu;Si(ttsits+ )=y
(106)

hence obtaining the desired conditional p.d.f. ofS;jyor -
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C Implied Volatility Smiles and Surfaces

(a) Model 1 - Constant parameters (b) Model 1 - Time Variant parameters
(c) Model 2 - Constant parameters (d) Model 2 - Time Variant parameters
(e) Model 3 - Constant parameters (f) Model 3 - Time Variant parameters

Figure 10: Volatility smiles for a caplet with expiry 10 yeas and tenor 1M. Ois rate is
modelled by Black model with implied volatility equal to 30%
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(a) Model 1 - Constant parameters (b) Model 1 - Time Variant parameters

(c) Model 2 - Constant parameters (d) Model 2 - Time Variant parameters

(e) Model 3 - Constant parameters (f) Model 3 - Time Variant parameters

Figure 11: Volatility smiles for a caplet with expiry 10 yeas and tenor 3M. Ois rate is
modelled by Black model with implied volatility equal to 30%
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(a) Model 1 - Constant parameters (b) Model 1 - Time Variant parameters

(c) Model 2 - Constant parameters (d) Model 2 - Time Variant parameters

(e) Model 3 - Constant parameters (f) Model 3 - Time Variant parameters

Figure 12: Volatility smiles for a caplet with expiry 10 yeas and tenor 1Y. Ois rate is
modelled by Black model with implied volatility equal to 30%
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(a) Model 1 - Constant parameters (b) Model 1 - Time Variant parameters

(c) Model 2 - Constant parameters (d) Model 2 - Time Variant parameters

(e) Model 3 - Constant parameters (f) Model 3 - Time Variant parameters

Figure 13: Volatility surfaces for a caplet with expiry 10 yars and tenor 1M. Ois rate is
modelled by Black model with implied volatility equal to 30%
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(a) Model 1 - Constant parameters (b) Model 1 - Time Variant parameters

(c) Model 2 - Constant parameters (d) Model 2 - Time Variant parameters

(e) Model 3 - Constant parameters (f) Model 3 - Time Variant parameters

Figure 14: Volatility surfaces for a caplet with expiry 10 yars and tenor 3M. Ois rate is
modelled by Black model with implied volatility equal to 30%
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(a) Model 1 - Constant parameters (b) Model 1 - Time Variant parameters

(c) Model 2 - Constant parameters (d) Model 2 - Time Variant parameters

(e) Model 3 - Constant parameters (f) Model 3 - Time Variant parameters

Figure 15: Volatility smiles for a caplet with expiry 10 yeas and tenor 1Y. Ois rate is
modelled by Black model with implied volatility equal to 30%
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D Abbreviations and Notation

D.1 General Notation

CIR = Cox-Ingersoll-Ross

Caplet 5is : undiscounted Ois caplet price function of strike K and other
variables

Caplet o : Undiscounted Libor caplet price function of strike K and other
variables

DP (t; T) = default risk-free stochastic discount factor from T to t

f Q = probability density function for x, the ratio of survival probabilities at
depo end and depo start,. associated to a Cox Process.

g? = Libor-Ois basis probability density function

G's probability measure associated to the$P(t;ts) numeraire

H = High credit risk

L = Low credit risk

Lgd = Loss Given Default, usually set to 60%

Ois = = Ovenight Indexed Swap Rate (used as risk-free rate proxy)
p.d.f. = probability density function

p® = Credit Spread marginal probability density function

pQ = Credit Spread conditional probability density function

p 2, ) = probability density function of a non-central  -squared random vari-
able with  degrees of freedom and non-centrality parameter

PP(t;T) = ER[DP(t; T)] = the price in t of default risk-free zero-coupon bond
expiring in T

PD = expected default probability for a Cox Process

PD = expected forward default probability for a Cox Process

= deterministic function that maps a Credit Spread S random variable into
its associated survival probability ratio x random variable

S = Expected Credit Spread

Siibor = Expected Libor-Ois basis

S Credit Spread random variable

Siibor Libor-Ois Basis random variable

SP = Expected Survival Probability in a Cox Process

$P = the Random Variable denoting a stochastic Survival Probabklity in a
Cox Process
ts = Depo Start Time

= Tenor

F = the random variable denoting the default time in a Cox Process
X = % = random variable de ned as the ratio of the survival proba-
bility at end and the survival probability at start of the hyp othetical depo

z = label variable indicating whether a bank is of H or L type
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D.2 Model 1 Notation

A (t) = instantaenous replacement matrix
A (t) = instantaneous transition probability matrix associate d to A (t)

B (t) = instantaneous stability matrix, i.e., the instantaneou s probabilities of
no replacement taking place

C(t) = overall transition matrix, i.e. includes the probabilit y of arriving in a
certain state z, including both cases of replacement and no replacement

(1) = replacement events arrival intensities for H and L, associated toA (t)
pnr (1) = probability of No Replacement taking place in (0;1).
2 (0;t) = last replacement event in the interval (O;t)

w( ;ts) = vector containing the probabilities of at least one replacement taking
place in (0; ts), collapsing inH or L respectively, assuming the last replacement
in (0;ts) has taken place in

D.3 Model 2 Notation

Sm 1.z = Libor-Ois basis random variable according to Model 1, with initial
Libor Panel in state z

Suw 1z = Expected Libor-Ois basis according to Model 1, with initial Libor
Panel in state z

Zy = subset of type H banks in initial panel
Z| = subset of type L banks in initial panel

D.4 Model 3 notation

A (t) = matrix containing the replacement fractions for banks who are driven
out of the panel by the decay process

(t) = intensity of the inhomogeneous decay process of the fraadns of banks
that entered the panel beforet

Rt
b, (u;t) = exp y z(V) av
c(uit) = (1) by(u;t)

_ = vector containing the H and L components of the Libor Panel entry
density for new members

' (u;t) = vector containing the H and L fractions of the panel who entered in
u, as observed at timet > u

S: = Libor-Ois basis random variable component associated to lhe remaining
banks of the initial panel

S1 = Risk-Neutral expected value of S;

S, = Libor-Ois basis component associated to all the banks thathave entered
the panel after the initial members

w (t) = vector containing the overall fractions of H and L banks in the panel
at time t
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